Linux之HugePage的原理与使用 本文介绍了虚拟地址、物理地址、地址转换、大页(HugePage)等概念,并在linux中创建大页,然后还使用c语言编写程序真实地使用了HugePage并且对其使用情况进行了检验和分析。希望本文对大家有所帮助和启发。
多租户数据库的缓冲区共享和预分配方案设计 云计算技术使企业能够受益于经济实惠、可扩展、安全且具有高可用性和可靠性的托管数据库服务。在云数据库中,多个租户可以共享一个数据库实例。多租户数据库方案为他们提供了相互隔离的数据库环境。这样,每个租户都可以在自己的数据库环境中管理数据,而不会影响其他租户。数据库使用缓冲池技术来加快数据访问速度。当租户需要访问某个数据页时,数据库首先会检查该数据页是否在缓冲池中。如果不在,数据库就会从磁盘读取并存储到缓冲池中。当缓冲池中的数据页数量达到上限时,驱逐算法会驱逐一些数据页,以便从磁盘加载新的数据页。
RESTful API简介 RESTful API简介RESTful API简介RESTful API的设计RESTful API的实现URI和URL的区别总结RESTful API(Representational State Transfer,表现层状态转移)是一种用于设计网络应用程序的架构风格。它基于一组原则,规定了资源应该如何定义和访问。客户端-服务器架构:客户端和服务器彼此分离,并通过标准化接口进行通信。无状态性:每个从客户端到服务器的请求必须包含服务器理解和完成请求所需的所有信息。服务器不会在请求之间存储任何客户端状态。
Python绘制随机游走图 随机游走图是图论中的一种模型,用于描述节点在图中随机移动的过程。通过模拟节点之间的随机移动,可以研究信息在网络中的传播过程,有助于理解病毒传播、社交网络中的信息传播等。随机游走图有助于分析节点在网络中的中心性,帮助确定关键节点、社交网络中的重要人物等。应用于搜索引擎算法,如PageRank,通过节点之间的随机游走来确定网页排名。用于理解社交网络中用户行为、社交关系以及信息传播的动态过程,对社交网络营销、推荐系统等有重要价值。随机游走图中的马尔可夫链理论有助于研究随机过程的平稳性质和收敛行为。
RSS教程 RSS是“真的很简单联播”或“富网站摘要”的缩写。它是一种网络订阅,允许用户以标准化和高效的方式访问在线内容的更新。RSS常用于那些经常更新其内容的网站,如新闻网站、博客或播客。那些经常更新内容的网站创建一个包含其文章、博客文章或其他内容摘要或全文的RSS订阅。RSS订阅是一个以XML(可扩展标记语言)格式编写的文件。它包括有关内容的信息,如标题、链接和简要描述。用户可以使用RSS阅读器或聚合器订阅这些源。这些工具定期检查订阅的源以获取更新,并以整体视图显示它们。
斐波那契数与泰波那契数 斐波那契数列是一个数学序列,从第三项开始,每一项都是前两项的和。在数学中具有重要的理论意义,涉及递归和递推的概念,常用于教学示例。相邻两项的比值趋近于黄金分割比例,与艺术、建筑等领域相关。出现在自然界中,如植物的生长、螺旋形状的贝壳等,与自然界的结构和分布有关。用于算法和编程中,是递归和动态规划的经典示例。
动态规划问题--爬楼梯 如果最后一步爬了 7 个台阶,那么我们得先爬到 8 ,要解决的问题缩小成:从 0 爬到 8 有多少种不同的方法。如果最后一步爬了 2个台阶,那么我们得先爬到 7 ,要解决的问题缩小成:从 0 爬到 7 有多少种不同的方法。由于这两种情况都会把原问题变成一个和原问题相似的、规模更小的子问题,所以可以用递归解决。每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?我们要解决的问题是从 0爬到 9有多少种不同的方法。需要 n 阶你才能到达楼顶。
Mermaid使用教程(绘制各种图) 接下来,做一个小小的总结:我们讨论了使用 Mermaid 来生成不同类型的图表。Mermaid 是一个 JavaScript 库,它允许用户使用 Markdown 语法来创建和渲染流程图、序列图、甘特图和 Git 提交历史图等。流程图:使用graph关键字来定义流程图,并通过箭头 (-->) 来表示流程中的步骤和它们之间的关系。序列图:也使用graph关键字,但通常指定方向(如LR表示从左到右)。序列图用于显示对象之间的交互,箭头表示消息传递。甘特图。
Mermaid流程图 Mermaid是一个基于JavaScript的绘图工具,使用类似于Markdown的语法,允许用户通过代码创建各种图表,包括流程图、状态图、时序图和甘特图等。它可以将代码块转化为HTML代码,并支持多种图表的方向。Mermaid极大地简化了复杂图的绘制和维护,对于熟悉Markdown语法的用户来说,可以快速上手。Mermaid 是一个用于生成流程图的 JavaScript 库,使用 Markdown 语法进行描述。通过 Mermaid,用户可以在文本编辑器中编写流程图代码,然后将其渲染为可视化的流程图。
Python之Matplotlib绘图调节清晰度 问题:在使用Matplotlib中的绘图时,如何提高图像的清晰度?使用来设置图像的DPI。增加DPI可以提高图像的清晰度,但也会增加文件大小。在保存图像时,使用来设置保存图像的DPI。选择矢量图格式(如SVG、PDF),能够在不同分辨率下保持清晰度。使用来调整图像的宽度和高度。总体而言,根据具体需求,可以根据DPI、图像尺寸、保存格式等因素进行调整,以获得所需的图像清晰度。
C++标准库vector的基础用法总结 C++标准库vector的基础用法总结vector简介简单应用push操作pop操作删除末尾删除开头参数传递vector是C++标准模板库(STL)中的一个动态数组模板类,它可以随着元素的添加而自动增长。vector使用连续的内存空间来存储元素,这意味着可以使用下标运算符([])来访问元素,就像使用数组一样高效。然而,与数组不同的是,vector的大小是动态的,可以自动调整以适应添加的元素。当新元素被添加到vector中时,如果当前容量不足以容纳新元素,vector。
NetWorkX之社会网络分析 networkx是 Python 中一个非常强大的模块,用于创建、操作和研究图结构的网络。在社会网络分析中,它可以用来创建、分析和可视化社会关系数据。以下是如何使用networkx安装和导入模块如果你还没有安装networkx创建图# 假设你有一个 DataFrame,其中每一行表示一个节点和其连接的节点})添加节点和边G.add_edge('A', 'B') # 添加一条从 A 到 B 的边G.add_node('C') # 添加一个节点 C分析网络结构使用networkx。
Simpy:Python之离散时间序列仿真 简单介绍:SimPy是一个用于仿真建模的Python库,它基于事件调度,具有很好的模块化和扩展性。SimPy支持连续和离散时间的仿真,特别适合处理随机和不确定性的系统。SimPy提供了一个清晰、一致的编程接口,使你能够更有效地表达复杂的系统模型。灵活的模型描述:SimPy支持连续和离散时间的仿真,可以描述复杂的系统行为。事件调度:SimPy使用事件调度法,可以处理并行和异步事件。模块化:SimPy的模块化设计使得你可以轻松地扩展和修改模型。随机性。
HPCC:高精度拥塞控制 TCP是最基础的网络传输层通信协议,其拥塞控制算法是为Internet这种相对低速、高延迟的网络环境设计的。在新一代的高速云网络中,TCP的拥塞控制算法无法充分发挥底层网络能力,而现有高速网络拥塞控制算法(如:RDMA协议中的拥塞控制算法DCQCN、TIMELY)都存在有一定的局限性。HPCC(高精度拥塞控制)是一种新的高速CC机制,它利用网络遥测(INT)获得精确的链路负载信息并精确控制流量。
初识Python之Networkx模块 本文主要介绍Networkx的使用方法和一些简单的应用案例,使用方法主要会介绍创建图、图的基本操作等;应用案例不仅会介绍如何生成无向图、有向图等,还会介绍Networkx在计算机网络、数据中心网络等网络中的简单应用案例。
【小技巧】WPS统计纯汉字(不计标点符号) 选择“高级搜索”,然后勾选“使用通配符”,然后在“查找内容”后面输入:[一-﨩]。注意:一定要带“[]”和“-”且这些都是英文字符,输入时别弄错,可以直接复制这里的。
ns3入门基础教程 总的来说,这段代码创建了一个包含两个节点的点对点网络拓扑,其中一个节点充当服务器,另一个节点充当客户端,它们之间通过UDP回显应用进行通信。包含头文件:代码一开始包含了一系列NS-3库的头文件,这些头文件提供了必要的类和函数,以便创建和模拟网络拓扑和通信。这段代码是一个C++程序,使用了NS-3网络模拟框架,用于模拟一个简单的点对点网络通信场景。将ns3命名空间引入到当前的代码作用域,以便在代码中使用NS-3库的类和函数,无需显式指定命名空间。启用了对网络数据包的捕获和记录,并指定了记录文件的名称。
全网最全的RDMA拥塞控制入门基础教程 在许多方面,它与传统的广域网相反。当前RDMA在以太网上的传输协议是RoCEv2,RoCEv2是基于无连接协议的UDP协议,相比面向连接的TCP协议,UDP协议更加快速、占用CPU资源更少,但其不像TCP协议那样有滑动窗口、确认应答等机制来实现可靠传输,一旦出现丢包,依靠上层应用检查到了再做重传,会大大降低RDMA的传输效率。发送方(RP)以最高速开始发送,沿途过程中如果有拥塞,会被标记ECN显示拥塞,当这个被标记的报文转发到接收方(NP)的时候,接收方(NP)会回应一个CNP报文,通知发送方(RP)。