随着科技的不断进步,嵌入式系统在日常生活和工业应用中扮演着越来越重要的角色。然而,系统的复杂性也随之增加,故障发生的风险和造成的影响也在上升。因此,故障预测与健康管理(Fault Prediction and Health Management, FPHM)技术应运而生,并在嵌入式系统领域得到了广泛的关注和应用。
FPHM技术的核心目标是通过实时监控和分析系统状态,提前识别出潜在的故障并采取预防措施。这不仅可以防止意外事故的发生,提高系统的安全性和可靠性,还能优化维护计划,降低维修成本,延长设备的使用寿命。
在实现过程中,FPHM技术通常依赖于传感器收集的实时数据、机器学习算法和大数据分析。传感器负责监测系统的关键性能指标,机器学习算法则通过历史数据学习,建立能够预测故障发生的模型,而大数据分析则用于处理和解析大量的监测数据,以提供准确的健康评估。
</