1.题目要求:
如果一个数列由至少两个元素组成,且每两个连续元素之间的差值都相同,那么这个序列就是 等差数列 。更正式地,数列 s 是等差数列,只需要满足:对于每个有效的 i , s[i+1] - s[i] == s[1] - s[0] 都成立。
例如,下面这些都是 等差数列 :
1, 3, 5, 7, 9
7, 7, 7, 7
3, -1, -5, -9
下面的数列 不是等差数列 :
1, 1, 2, 5, 7
给你一个由 n 个整数组成的数组 nums,和两个由 m 个整数组成的数组 l 和 r,后两个数组表示 m 组范围查询,其中第 i 个查询对应范围 [l[i], r[i]] 。所有数组的下标都是 从 0 开始 的。
返回 boolean 元素构成的答案列表 answer 。如果子数组 nums[l[i]], nums[l[i]+1], ... , nums[r[i]] 可以 重新排列 形成 等差数列 ,answer[i] 的值就是 true;否则answer[i] 的值就是 false 。
示例 1:
输入:nums = [4,6,5,9,3,7], l = [0,0,2], r = [2,3,5]
输出:[true,false,true]
解释:
第 0 个查询,对应子数组 [4,6,5] 。可以重新排列为等差数列 [6,5,4] 。
第 1 个查询,对应子数组 [4,6,5,9] 。无法重新排列形成等差数列。
第 2 个查询,对应子数组 [5,9,3,7] 。可以重新排列为等差数列 [3,5,7,9] 。
示例 2:
输入:nums = [-12,-9,-3,-12,-6,15,20,-25,-20,-15,-10], l = [0,1,6,4,8,7], r = [4,4,9,7,9,10]
输出:[false,true,false,false,true,true]
2.题目代码:
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int compare(const void* a,const void* b){
return *(int*)a - *(int*)b;
}
bool* checkArithmeticSubarrays(int* nums, int numsSize, int* l, int lSize, int* r, int rSize, int* returnSize) {
bool* answer = (bool*)malloc(sizeof(int) * lSize);//设计一个bool类型的数组,用来判断各个范围是否为等差数列
int j = 0;
for(int i = 0;i < lSize;i++){
int arr[500] = { 0 };//设置一个数组,把各个范围数组存入里面
memcpy(arr,nums + l[i],sizeof(int) * (r[i] - l[i] + 1));//直接用memcpy,把nums起始位置到终止位置找好
qsort(arr,r[i] - l[i] + 1,sizeof(int),compare);//用来排序
int diff[500] = { 0 };//设置数组,判断是否为等差数列
int j_1 = 0;
for(int f = 0;f < (r[i] - l[i]);f++){
diff[j_1] = arr[f + 1] - arr[f];
j_1++;
}
int flag = 1;
//如果差值不同,则不为等差数列,如果差值相同则为等差数列
for(int f = 0;f < j_1 - 1;f++){
if(diff[f] != diff[f + 1]){
flag = 0;
break;
}
}
if(flag == 1){
answer[j] = true;
j++;
}else{
answer[j] = false;
j++;
}
}
*returnSize = lSize;
return answer;
}