2025年3月25日学习记录

连续凸逼近(SCA)

是一种将非凸问题转化成凸优化问题的手段。

首先了解下什么是凸函数。如下面的图

也就是定义域中任意两点连线组成的线段都在这两点的函数曲线(面)上方。

因此有凹函数的定义:如果函数 f 是凸函数,那么函数 −f 是凹函数。

解释:

相应的链接:Convex Optimization——凸函数 - 知乎

对于最小化和最大化问题的SCA方法:

主要的是三点:

1.与原函数在近似点处函数值相同;

2.构造替代函数的时候,优化问题是最小化的时候,替代函数是原函数的上界;优化问题是最大化某问题的时候,替代函数是原函数的下界

3.在近似点处的梯度一致

因此在构造替代函数的时候,要注意构造的替代函数是凸的。可以用泰勒展开到二阶,保证二阶导数>0;

MM方法和SCA方法类似,但是要求近似函数在近似点在原函数上面(是他的上界)另外三点都相同。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值