连续凸逼近(SCA)
是一种将非凸问题转化成凸优化问题的手段。
首先了解下什么是凸函数。如下面的图
也就是定义域中任意两点连线组成的线段都在这两点的函数曲线(面)上方。
因此有凹函数的定义:如果函数 f 是凸函数,那么函数 −f 是凹函数。
解释:
相应的链接:Convex Optimization——凸函数 - 知乎
对于最小化和最大化问题的SCA方法:
主要的是三点:
1.与原函数在近似点处函数值相同;
2.构造替代函数的时候,优化问题是最小化的时候,替代函数是原函数的上界;优化问题是最大化某问题的时候,替代函数是原函数的下界
3.在近似点处的梯度一致
因此在构造替代函数的时候,要注意构造的替代函数是凸的。可以用泰勒展开到二阶,保证二阶导数>0;
MM方法和SCA方法类似,但是要求近似函数在近似点在原函数上面(是他的上界)另外三点都相同。