- 博客(31)
- 收藏
- 关注
原创 指尖编程产品介绍
鉴于还有很多同学对我们的产品和我们还不太了解,这里我们再统一做下介绍。一、指尖编程的上课形式我们从初学者零基础的角度考虑,采用网页课程、网页一站式配备学习所需,以智能化交互教学形式让学员在学习时更轻松吸收知识。不仅有随堂的知识点测试还有程序的实操练习。每节课后还有课后练习,可以及时巩固知识。完成阶段的学习后可以使用阶段的知识掌握测试,进一步巩固python知识。二、交互式学习和其他学习方式的对比首先交互式的学习和看书和看视频一样比较低成本且时间非常灵活,但在线的交互式学习可以边学边完成训
2021-05-27 13:36:25 284 1
原创 高效使用Python
一、Python小工具内置下载和网站进入相应目录:<br>2.xpython -m SimpleHTTPServer3.xpython -m http.server字符串转换为JSON[root@mysql-m ~]# echo '{"job":"developer","name":"1mx","sex":"male"}' | python -m json.tool{ "job": "developer", "name": "1mx", "sex": "
2021-04-22 16:08:07 181
翻译 Pandas排序方式
Pandas支持三种排序方式,按索引标签排序,按值排序,按两种方式混合排序。按索引排序Series.sort_index()与DataFrame.sort_index方法用于按索引层级对Pandas对象排序。数值排序Series.sort_values()方法用于按值对Series排序。DataFrame.sort_values()方法用于按行列的值对DataFrame排序。DataFrame.sort_values()的可选参数by用于指定按哪列排序,该参数的值可以是一列或多列数据。参数by
2021-04-15 16:37:43 1306
翻译 Pandas数据类型
大多数情况下,Pandas使用NumPy数组、Series或DataFrame里某列的数据类型。NumPy支持float、int、bool、timedelta[ns]、datetime64[ns],NumPy是不支持带时区信息的datetime。Pandas与第三方支持库扩充了NumPy类型系统,接下来我们主要来介绍Pandas的内部扩展。Pandas的扩展类型,如下表所示Pandas用object存储字符串。虽然,object数据类型能够存储任何对象,但我们要尽量避免这样做。DataFrame
2021-04-14 16:32:22 1476
翻译 Pandas函数应用
不管是为Pandas对象应用自定义函数,还是应用第三方函数,都离不开以下几种方法。用哪种方法取决于操作的对象是DataFrame,还是Series;是行、列,还是元素。1.表现级函数应用:pipe()2.行列级函数应用:apply()3.聚合API:agg()与transform()4.元素级函数应用:applymap()表现级函数应用虽然可以把DataFrame与Series传递给函数,不过链式调用函数时,最好使用pipe()方法。对比以下两种方式:下列代码与上述代码是等效的:Pand
2021-04-12 16:18:48 304
转载 Pandas用法大全
一、生成数据表首先导入pandas库,一般会用到numpy库,所以我们先导入备用import numpy as npimport pandas as pd导入CSV或者xlsx文件df = pd.DataFrame(pd.read_csv('name.csv',header=1))df = pd.DataFrame(pd.read_excel('name.xlsx'))用pandas创建数据表df = pd.DataFrame({"id":[1001,1002,1003,1004,100
2021-04-08 16:22:56 177
原创 Pandas-二进制操作
Pandas数据结构之间执行二进制操作,要注意下列两个关键点:多维(DataFrame)与低维(Series)对象之间的广播机制计算中的缺失值处理这两个问题可以同时,但下面我们先介绍怎么分开处理。匹配/广播机制DataFrame支持add()、sub()、mul()、div()、radd()、rsub()等方法执行二进制操作。广播机制重点关注输入的Series,通过axis关键字,匹配index或columns即可调用这些函数。还可以用Series对齐多层索引DataFrame的某一层次。
2021-04-07 16:31:07 988
原创 Pandas数据结构基础用法
Head与Tailhead()与tail()用于快速预览Series与DataFrame,默认显示5条数据,也可以指定显示数据的数量。属性与底层数据Pandas可以通过多个属性访问元数据:shape:输出对象的轴维度,与ndarray一致轴标签:Series:Index(仅有此轴)DataFrame:Index(行)与列Pandas对象(Index、Series、DataFrame)相当于数组的容器,用于存储数据、执行计算。大部分类型的底层数组都是numpy.ndarray。不过,Pan
2021-04-06 17:18:41 157
原创 Pandas处理什么样的数据?
首先,如果我们想要加载pandas程序包并开始使用它,我们先要导入该程序包,pandas的别名为pd,因此按pd所有pandas文档的标准做法加载pandas。pandas数据表表示形式如果我想存储泰坦尼克号的乘客数据,对于许多乘客,我知道姓名(字符),年龄(数字)和性别(男/女)数据。要将数据手动存储在表中,要创建一个DataFrame。当使用Python的列表字典时,字典键将用作列标题,而每个列表中的值将用作DataFrame的列。Data是一种二维数据结构,它可以在列中存储不同类型的数据
2021-04-02 14:03:24 340
原创 Pandas介绍和其有什么优点?
Pandas是Python的核心数据分析支持库,提供了快速、灵活、明确的数据结构,旨在简单、直观的处理关系型、标记型数据。Pandas适用于处理以下类型的数据:与SQL或Excel表类似的,含异构列的表格数据;有序和无序(非固定频率)的时间序列数据;带行列标签的矩阵数据,包括同构或异构型数据;任意其它形式的观测、统计数据集,数据转入Pandas数据结构时不必事先标记。Pandas的主要数据结构是Series(一维数据)与DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科
2021-04-01 09:43:27 5111
原创 NumPy基础-子类化ndarray
子类化的ndarray相对简单,但是与其它Python对象相比,它却更复杂一点。ndarrays和对象创建ndarray的子类化很复杂,因为ndarray类的新实例可以通过三种不同的方式产生。1.显示的构造函数调用在MySubClass(params),这是创建Pythton实例的常用方法。2.视图转换,将现有的ndarray转换为给定的子类3.模板新功能,从模板实例创建新实例,包括从子类化的数组返回切片,从ufunc创建返回类型以及复制数组。最后两个是ndarray的特性-为了支持数组切片之类
2021-03-29 13:33:03 247
原创 NumPy基础-编写自定义数组容器
我们可以使用NumPy中引入的NumPy的分配机制来编写与NumPy API兼容并提供NumPy功能的自定义实现的自定义n维数组容器,应用程序包括dask数组(分布在多个节点上的n维数组)和cupy数组(GPU上的n维数组 )。下面示例的实用程序不常用,但说明了所涉及的概念。我们自定义数组可以像这样实例化:我们可以使用numpy.array或numpy.asarray转换为numpy数组,这将调用其_array_方法以获得标准numpy.ndarray。如果我们使用numpy函数对arr进行操
2021-03-23 09:57:45 231
原创 NumPy基础-结构化数组(三)
记录数组作为一个可选的便利,NumPy提供了ndarray子类,该子类允许按属性而不是仅按索引访问结构化数组的字段。记录数组使用特殊的数据类型,该数据类型允许按属性访问从数组获得的结构化标量上的字段。numpy.rec模块提供了从各种对象创建recarrays的函数。创建记录数组最简答的方法是使用numpy.rec.array:numpy.rec.array可以将各种参数转换为记录数组,包括结构化数组:可以使用适当的视图获取结构化数组的记录数组例如:为了方便起见,将ndarray作为类型查看
2021-03-19 10:44:38 314
原创 NumPy基础-结构化数组(二)
对结构化数组进行索引和赋值将数据分配给结构化数组有多种方法可以将值分配给结构化数组:使用Python元组、使用标量值或使用其它结构化数组。1.从Python元组分配将值分配给结构化数组的最简答方法是使用Python元组,每个分配的值都应是一个长度等于数组中字段数的元组,而不是列表或数组,因为它们将触发NumPy的广播规则。元组的元素从左到右分配给数组的连续字段:2.标量分配分配给结构化元素的标量将分配给所有字段,当将标量分配给结构化数组或将非结构化数组分配给结构化数组时,则会发生这种情况:
2021-03-18 11:02:34 430
原创 NumPy基础-结构化数组(一)
结构化数组是ndarray,它的数据类型是由一些简单的数据类型组成的结构,这些数据类型按命名字段的序列组织。例如:这里x是一个长度为2的一维数组,其数据类型为具有三个字段结构:1.长度为10或更短的字符串,名称为“name”2.一个32位整数“age”和33.一个32位浮点数,名称为“weight”如果x在位置1索引,可以得到一个结构:可以通过使用字段名称建立索引来访问和修改结构化数组和各个字段:结构化数据类型被设计成能够模仿C语言中的结构,并共享类似的内存布局。它们用于与C代码进行接口
2021-03-17 10:07:10 1150
原创 NumPy基础-字节交换
字节顺序和ndarrays介绍ndarrays是一个对象,它为内存中的数据提供了python数组接口。通常,你要使用数组查看的内存与运行python的计算机的字节顺序不同。例如,我可能正在使用小端CPU的计算机(如Intel Pentium),但是我已经从由大端计算机编写的文件中加载了一些数据。假设我已经从sun(大端)计算机编写的文件中加载了4个字节。我知道这4个字节代表两个16位整数。在大端计算机上,先存储两个字节的整数,然后在存储最高有效字节(MSB),然后存储最低有效字节(LSB)。因此,字节
2021-03-12 10:23:35 289
原创 NumPy基础-广播
“广播”一词描述NumPy如何在算术运算期间处理具有不同形状的数组。受一定限制,较小的数组在较大的数组之间传播,以便它们具有兼容的形状。广播提供了一种向量化数组操作的方法,这种循环会在C中而不是Python中发生。这样做不会产生不必要的数据副本,而且通常会带来高效的算法实现。然而,在某些情况下,广播并不是一个好主意,因为它会导致低效的内存使用,从而减慢计算速度。NumPy操作通常在逐个元素的数组对上进行。在最简单的情况下,两个数组必须具有完全相同的形状,如下所示:当阵列的形状满足某些约束时,NumPy
2021-03-11 10:00:13 175
原创 NumPy基础-索引
数组索引是指使用方括号([])来索引数组值。索引有很多选项,这给NumPy提供了强大的索引功能,但是强大的功能也带来了一些复杂性和潜在的混乱。单个元素的索引一维数组的单元素索引是我们所期望的,它的工作方式与其他标准Python序列完全相同。它基于0,并且接受复索引以数组末尾开始索引。与列表和元组不同,numpy数组支持多维数组的多维索引。这意味着不必将每个维度的索引都分成自己的一组方括号。这里我们要注意,如果索引一个多维数组的索引比维数少,则将获得一个多维数组。例如:也就是说,指定的每个索引
2021-03-10 10:27:23 877
原创 NumPy基础-数组创建
有5种创建数组的通用机制:1.从其它Python结构(例如列表、元组)转换2.内在的NumPy数组创建对象(例如arange,1,0等)3.从磁盘读取标准或自定义格式的数组4.通过使用字符串或缓冲期从原始字节创建数组5.使用特殊的库函数创建(例如,随机的)将Python array_like对象转换为NumPy数组通常,可以通过使用array()函数将Python中以数组状结构排列的数值数据转换为数组。最明显的例子是列表和元组。一些对象可能支持数组协议,并允许以这种方式转换为数组。查找是否可以
2021-03-05 10:09:20 354 1
原创 NumPy基础-数据类型
数据类型和类型之间的转换NumPy比Python支持更多的数据类型,本文主要介绍哪些可用,以及如何修改数组的数据类型。支持的基本类型与C中的基本类型紧密相关:由于许多具有平台相关的定义,因此提供了一组固定大小的别名:NumPy数值类型是dtype(数据类型)对象的实例,每个对象都有其独特的特征,导入NumPy后,可使用在dtypes可作为np.bool_、p.float32等等有5种基本的数值类型,分别代表布尔(bool),整数(int),无符号整数(uint)浮点(float)和复数。名
2021-03-04 13:26:34 535 1
原创 NumPy安装
首先我们要知道什么是NumPy?NumPy是Python中科学计算的基本软件包。它是一个Python库,提供多维数组对象,各种派生对象(例如蒙版数组和矩阵)以及各种例程,用于对数组进行快速操作,包括数学,逻辑,形状处理,排序,选择,I / O ,离散傅立叶变换,基本线性代数,基本统计运算,随机模拟等等。NumPy安装已有发行版安装安装NumPy的唯一前提是Python本身。而Python官网上的发行版是不包含NumPy模块的。如果你希望以最简单的方式开始使用,建议你使用Anaconda发行版,它包括
2021-03-03 10:35:56 1516
原创 Python常用库(二)
在上一篇文章中我们讲到了数值计算、数据可视化、Web开发、数据库管理的一些常用库。下面我们来看看自动化运维、图形界面编程、机器学习、深度学习的常用库。自动化运维jumpsever跳板机用Python编写的开源跳板机(堡垒机)系统,该系统实现跳板机的基本功能,包括身份验证,授权和审计,并集成Ansible,批处理命令等。支持WebTerminalBootstrap编写,漂亮的界面,自动收集硬件信息,支持视频播放、命令搜索、实时监控、批量上传和下载等功能,基于SSH协议进行管理,客户端无需安装代理。主要用
2021-03-02 10:25:25 123
原创 Python常用库(一)
Python作为一个设计优秀的程序语言,现在已广泛应用于各种领域,有着许多强大的第三方类库,使我们在工作和学习的过程中更加的方便快捷。下面我们就来看看都有哪些吧。数值计算NumPy支持多维数组与矩阵运算,也针对数组运算提供大量的数学函数库。通常与SciPy和Matplotlib一起使用,支持比Python更多种类的数值类型,其中定义的最重要的对象是称为ndarray的n维数组类型,用于描述相同类型的元素集合,可以使用基于0的索引访问集合中元素。SciPy在NumPy库的基础上增加了众多的数学、科学
2021-03-01 13:39:17 75
原创 PyCharm使用小技巧
PyCharm作为一个Python开发的常用工具,跟我们常用的办公软件office一样在使用的过程中有许多的小技巧,这些小技巧能够在我们使用的过程中提高我们的效率。下面我们就来看看吧。快速查找文件快捷键Ctrl+E可查看最近访问过的文件,Ctrl+Shift+E则可打开最近编辑过的文件。万能搜索连按两下Shift键可以搜索文件名、类名、方法名,还可以搜索目录名,但搜索目录是要在关键字前面加斜杠(/)。查看历史剪贴板快捷键Ctrl+Shift+V可访问历史剪贴板代码行及插空行操作Shift+E
2021-02-04 16:19:51 142
原创 PyCharm下载和安装教程
PyCharm是JetBrains公司研发的,用于开发Python的IDE开发工具。是大多数Python开发学习者和工作者的首选开发工具。进入JetBrains公司官网(www.jetbrains.com)我们可以看到有许多的开发工具,如下图所示。PyCharm的下载和安装我们进入到PyCharm的官方下载页面,我们可以看到有两个不同的版本,分别是Professional(专业版)和Community(社区版)。专业版是收费的,可以免费试用30天,而社区版是完全免费的。版本可根据个人需求选择,这里
2021-02-02 13:49:55 567
原创 Mac OS安装Python环境
和Linux发行版类似,最新版的Mac OS X也会默认自带Python2.x。我们可以在终端(Terminal)窗口中输入python命令来检测是否安装了python开发环境,以及安装了那个版本,如下所示。c.zhijianbiancheng.net:~ youji$ pythonPython 2.7.18 (default, Jan 24 2021, 18:31:42)[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.34)] on darw
2021-01-29 10:38:58 361
原创 Windows安装Python
在Windows上安装Python和我们安装普通的软件一样简单,下载了安装包后一直“下一步”即可。Python安装包下载地址:https://www.python.org/downloads/打开该链接,我们可以看到有不同的版本如下图所示。截止到目前(2021/1/20),Python 的最新版本是 3.9.1,我们就以该版本为例演示 Windows 下的 Python 安装过程。点击上图中的版本号或者“Download”按钮进入对应版本的下载页面,滚动到最后即可看到各个平台的 Python 安装
2021-01-28 10:21:31 166
原创 指尖编程第一届编程赛
前几天突如其来的寒冬让小编瑟瑟发抖,很多城市飘起了雪花,大家有没有裹紧自己的小棉袄呢。大冬天穿的太多感觉自己的身体和脑子都被层层衣服禁锢了,一起活动一下让脑子动起来吧。指尖编程给大家带来了锻炼脑力的基础小比赛!比赛奖励多多,千元现金小礼品~等你来挑战!关于本次比赛比赛使用语言:Python比赛时间:2021年1月23日 晚20:00-20:10参赛人员:两人一组组队进行 无论你是编程小白还是编程大神都可以来动动脑尝试一下参赛方式:1.关注指尖编程公众号进行比赛队伍创建2.邀请一位好友加入队伍.
2021-01-18 14:07:32 287
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人