63. 不同路径 II

该文描述了一个C++程序,用于计算一个包含障碍物的网格中从左上角到右下角的不同路径数量。程序使用动态规划策略,首先初始化边缘,然后通过遍历网格,根据上方和左侧的路径数量更新每个位置的路径数。如果遇到障碍物,则该位置的路径数量设为0。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

思路:

C++实现如下:


一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。

现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?

网格中的障碍物和空位置分别用 1 和 0 来表示。

示例 1:

输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右

示例 2:

输入:obstacleGrid = [[0,1],[0,0]]
输出:1

提示:

  • m == obstacleGrid.length
  • n == obstacleGrid[i].length
  • 1 <= m, n <= 100
  • obstacleGrid[i][j] 为 0 或 1

思路:

先给边缘进行初始化,如果边缘某一位置有石头,那么从该位置往后的位置都是0条路径。

而中间的每一块取决于其上方和左侧,如果当前位置为石头,那么将到达当前位置的路径数量设置为0。

需要注意的有两种特殊情况,即行为1行或列为一列,这种位置只能靠紧邻的前一位置到达,如果路径中存在一块及以上的石头,到达终点的道路的数量只能为0.

C++实现如下:

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        if(m==1||n==1){
            for(int i = 0;i<m;++i){
                for(int j = 0;j<n;++j){
                    if(obstacleGrid[i][j]==1){
                        return 0;
                    }
                }
            }
            return 1;
        }


        for(int i = 0;i<m;++i){
            if(obstacleGrid[i][0]==1){
                obstacleGrid[i][0]=0;
            }else{
                if(i==0){
                    obstacleGrid[i][0]=1;
                }
                else{
                    obstacleGrid[i][0]=obstacleGrid[i-1][0];
                }                
            }
        }
        for(int i = 1;i<n;++i){
            if(obstacleGrid[0][i]==1){
                obstacleGrid[0][i]=0;
            }else{
                obstacleGrid[0][i]=obstacleGrid[0][i-1];           
            }
        }
        for(int i = 1;i<m;++i){
            for(int j = 1;j<n;++j){
                if(obstacleGrid[i][j]==1){
                    obstacleGrid[i][j] = 0;
                }else{
                    obstacleGrid[i][j] = obstacleGrid[i-1][j] + obstacleGrid[i][j-1];
                }
            }
        }
        return obstacleGrid[m-1][n-1];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值