目录
一个机器人位于一个 m x n
网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish”)。
现在考虑网格中有障碍物。那么从左上角到右下角将会有多少条不同的路径?
网格中的障碍物和空位置分别用 1
和 0
来表示。
示例 1:
输入:obstacleGrid = [[0,0,0],[0,1,0],[0,0,0]]
输出:2
解释:3x3 网格的正中间有一个障碍物。
从左上角到右下角一共有 2 条不同的路径:
1. 向右 -> 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右 -> 向右
示例 2:
输入:obstacleGrid = [[0,1],[0,0]]
输出:1
提示:
m == obstacleGrid.length
n == obstacleGrid[i].length
1 <= m, n <= 100
obstacleGrid[i][j]
为0
或1
思路:
先给边缘进行初始化,如果边缘某一位置有石头,那么从该位置往后的位置都是0条路径。
而中间的每一块取决于其上方和左侧,如果当前位置为石头,那么将到达当前位置的路径数量设置为0。
需要注意的有两种特殊情况,即行为1行或列为一列,这种位置只能靠紧邻的前一位置到达,如果路径中存在一块及以上的石头,到达终点的道路的数量只能为0.
C++实现如下:
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
if(m==1||n==1){
for(int i = 0;i<m;++i){
for(int j = 0;j<n;++j){
if(obstacleGrid[i][j]==1){
return 0;
}
}
}
return 1;
}
for(int i = 0;i<m;++i){
if(obstacleGrid[i][0]==1){
obstacleGrid[i][0]=0;
}else{
if(i==0){
obstacleGrid[i][0]=1;
}
else{
obstacleGrid[i][0]=obstacleGrid[i-1][0];
}
}
}
for(int i = 1;i<n;++i){
if(obstacleGrid[0][i]==1){
obstacleGrid[0][i]=0;
}else{
obstacleGrid[0][i]=obstacleGrid[0][i-1];
}
}
for(int i = 1;i<m;++i){
for(int j = 1;j<n;++j){
if(obstacleGrid[i][j]==1){
obstacleGrid[i][j] = 0;
}else{
obstacleGrid[i][j] = obstacleGrid[i-1][j] + obstacleGrid[i][j-1];
}
}
}
return obstacleGrid[m-1][n-1];
}
};