老码农毅然起身,走到白板前拿起碳素笔,开始讲解。
骑手要达到顾客家,必然要穿过十五条街区,而现实情况更为复杂,诸如道路拥堵、断路施工、高峰限流等。为了简化讨论,将不利因素统合为一个权值,即经过这条路所要付出的代价,数值越高越不利。
对于这种场景,动态规划法的思想是最适合的。首先解释一下,动态规划的基本思路类似于分治法。就是将一个大问题划分为一个一个独立的子问题进行解决。所有的子问题解决之后,将子问题的解进行一次归纳,即得到原始问题的最终解。
回到我们所要解决的核心问题上来,就是如何尽快得出骑手的最佳路线?我们可以给街区编号,那么骑手站在一号街区,他最终的目标是要最快地到达十五号街区。
基于动态规划法的思路,我们只需要考虑如何让骑手最快到达下一个街区就可以,而不必把所有街区的可能路径都计算出来。
例如,骑手站在一号街区,我们只要找到通往二号街区的最短路径,把它记下来就可以;当他到达二号街区时,再计算出到达三号街区的最短路径……
以此类推,我们只要十五轮计算,每轮只计算出当前街区路径的最小值,最后将十五个最小值的路径串接起来,通知骑手,出发!
说到这里,老码农潇洒地把碳素笔一甩,补充了一句:“动态规划最大的优点就在于,它的局部最优解集合就是全局最优解,它将计算量降低了几个数量级。”
迎着众人钦佩的目光,老码农飘然坐回了自己的工位。这时老板把桌子一拍,大喊了一声:“今天晚上加班给我做出来,明天上线!”