(day29)leecode题——二叉树

二叉树的中序遍历

描述 

给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。

示例 1:

输入:root = [1,null,2,3]
输出:[1,3,2]

示例 2:

输入:root = []
输出:[]

示例 3:

输入:root = [1]
输出:[1]

提示:

  • 树中节点数目在范围 [0, 100] 内
  • -100 <= Node.val <= 100

进阶: 递归算法很简单,你可以通过迭代算法完成吗?

Leecode题解henry

在树的深度优先遍历中(包括前序、中序、后序遍历),递归方法最为直观易懂,但考虑到效率,我们通常不推荐使用递归。

栈迭代方法虽然提高了效率,但其嵌套循环却非常烧脑,不易理解,容易造成 “一看就懂,一写就废” 的窘况。而且对于不同的遍历顺序(前序、中序、后序),循环结构差异很大,更增加了记忆负担。

因此,使用一种 “颜色标记法” (瞎起的名字……),兼具栈迭代方法的高效,又像递归方法一样简洁易懂,更重要的是,这种方法对于前序、中序、后序遍历,能够写出完全一致的代码。

其核心思想如下:

使用颜色标记节点的状态,新节点为白色,已访问的节点为灰色。
如果遇到的节点为白色,则将其标记为灰色,然后将其右子节点、自身、左子节点依次入栈。
如果遇到的节点为灰色,则将节点的值输出。

使用这种方法实现的中序遍历如下:

​
# 定义二叉树节点的类
class TreeNode:
    def __init__(self, val=0, left=None, right=None):
        # 节点值
        self.val = val
        # 左子节点
        self.left = left
        # 右子节点
        self.right = right

# 定义解决方案的类
class Solution:
    def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        # 定义颜色标记:white表示未访问,green表示已访问
        white, green = 0, 1
        
        # 初始化结果列表,用于存储中序遍历的结果
        res = []
        
        # 初始化栈,栈中存储的是元组(节点的颜色,节点)
        stack = [(white, root)]
        
        # 当栈不为空时,循环处理
        while stack:
            # 弹出栈顶元素,获取节点的颜色和节点
            color, node = stack.pop()
            
            # 如果节点为空,跳过本次循环
            if node is None:
                continue
            
            # 如果节点是white色(未访问),按照右->根->左的顺序将节点入栈
            if color == white:
                # 先将右子节点入栈
                stack.append((white, node.right))
                # 将当前节点标记为green色(已访问)后入栈
                stack.append((green, node))
                # 最后将左子节点入栈
                stack.append((white, node.left))
            else:
                # 如果节点是green色(已访问),将节点值加入结果列表
                res.append(node.val)
        
        # 返回中序遍历的结果
        return res

​

整体分析

该代码通过使用颜色标记法和栈来实现二叉树的中序遍历(左-根-右),具体过程如下:

  1. TreeNode类: 定义了一个简单的二叉树节点类,包含节点值、左子节点和右子节点的指针。
  2. Solution类: 定义了一个解决方案类,其中包含一个用于中序遍历的方法inorderTraversal
  3. inorderTraversal方法:
    • 定义了两个颜色标记whitegreen,分别表示未访问和已访问。
    • 初始化一个空的结果列表res,用于存储中序遍历的结果。
    • 初始化一个栈stack,并将根节点与white标记一起放入栈中。
    • 进入while循环,循环处理栈中的节点:
      • 弹出栈顶元素,获取节点的颜色和节点本身。
      • 如果节点为空,跳过本次循环。
      • 如果节点是white(未访问),按照右->根->左的顺序将节点及其子节点入栈:
        • 先将右子节点与white标记一起放入栈中。
        • 将当前节点与green标记一起放入栈中。
        • 最后将左子节点与white标记一起放入栈中。
      • 如果节点是green(已访问),将节点值加入结果列表res
    • 循环结束后,返回结果列表res

 如要实现前序、后序遍历,只需要调整左右子节点的入栈顺序即可。

二叉树的最大深度

 描述

给定一个二叉树 root ,返回其最大深度。

二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:3

示例 2:

输入:root = [1,null,2]
输出:2

提示:

  • 树中节点的数量在 [0, 104] 区间内。
  • -100 <= Node.val <= 100

Leecode题解Krahets 

解题思路:

树的遍历方式总体分为两类:深度优先搜索(DFS)、广度优先搜索(BFS)。

常见 DFS : 先序遍历、中序遍历、后序遍历。
常见 BFS : 层序遍历(即按层遍历)。
求树的深度需要遍历树的所有节点,本文将介绍基于 后序遍历(DFS) 和 层序遍历(BFS) 的两种解法。

方法一:后序遍历(DFS)

树的后序遍历 / 深度优先搜索往往利用 递归 或 栈 实现,本文使用递归实现。

关键点: 此树的深度和其左(右)子树的深度之间的关系。显然,此树的深度 等于 左子树的深度 与 右子树的深度中的 最大值 +1 。

算法解析:

终止条件: 当 root​ 为空,说明已越过叶节点,因此返回 深度 0 。
递推工作: 本质上是对树做后序遍历。
计算节点 root​ 的 左子树的深度 ,即调用 maxDepth(root.left)。
计算节点 root​ 的 右子树的深度 ,即调用 maxDepth(root.right)。
返回值: 返回 此树的深度 ,即 max(maxDepth(root.left), maxDepth(root.right)) + 1。

代码实现 
class Solution:
    def maxDepth(self, root: Optional[TreeNode]) -> int:
        # 如果当前节点为空,返回深度0
        if not root: 
            return 0
        
        # 递归计算左子树和右子树的最大深度,取两者的最大值再加1(当前节点)
        return max(self.maxDepth(root.left), self.maxDepth(root.right)) + 1

 

详细步骤
  1. 检查当前节点是否为空:
    • 如果root为None,表示当前节点为空,此时返回0,因为空树的深度为0。
  2. 递归调用:
    • 对左子树调用self.maxDepth(root.left),计算左子树的最大深度。
    • 对右子树调用self.maxDepth(root.right),计算右子树的最大深度。
  3. 计算最大深度:
    • 使用max函数取左子树和右子树深度中的较大值。
    • 在较大值的基础上加1,表示当前节点的深度。
  4. 返回结果:
    • 返回最终计算得到的最大深度。

 

方法二:层序遍历(BFS)

树的层序遍历 / 广度优先搜索往往利用 队列 实现。

关键点: 每遍历一层,则计数器 +1 ,直到遍历完成,则可得到树的深度。

算法解析:

特例处理: 当 root​ 为空,直接返回 深度 0 。
初始化: 队列 queue (加入根节点 root ),计数器 res = 0。
循环遍历: 当 queue 为空时跳出。
初始化一个空列表 tmp ,用于临时存储下一层节点。
遍历队列: 遍历 queue 中的各节点 node ,并将其左子节点和右子节点加入 tmp。
更新队列: 执行 queue = tmp ,将下一层节点赋值给 queue。
统计层数: 执行 res += 1 ,

代码实现 
class Solution:
    def maxDepth(self, root: TreeNode) -> int:
        # 如果根节点为空,返回深度0
        if not root: 
            return 0
        
        # 初始化队列和结果变量
        queue, res = [root], 0
        
        # 当队列不为空时,循环处理
        while queue:
            # 临时列表,用于存储当前层的所有节点的子节点
            tmp = []
            
            # 遍历当前层的所有节点
            for node in queue:
                # 如果左子节点存在,加入临时列表
                if node.left: 
                    tmp.append(node.left)
                
                # 如果右子节点存在,加入临时列表
                if node.right: 
                    tmp.append(node.right)
            
            # 将队列更新为下一层的所有节点
            queue = tmp
            
            # 深度加1
            res += 1
        
        # 返回最终计算得到的深度
        return res
详细步骤
  1. 基础情况:

    • 如果根节点为空(即root为None),返回深度为0。
  2. 初始化队列和深度变量:

    • 初始化队列queue,将根节点放入队列。
    • 初始化结果变量res为0,用于存储计算得到的深度。
  3. 广度优先搜索:

    • 使用while循环,当队列不为空时进行处理。
    • 初始化临时列表tmp,用于存储当前层的所有节点的子节点。
    • 遍历当前层的所有节点,将其左子节点和右子节点(如果存在)加入临时列表tmp
    • 将队列queue更新为下一层的所有节点,即tmp
    • 每遍历一层,深度变量res加1。
  4. 返回结果:

    • 循环结束后,返回最终计算得到的深度res
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值