- 博客(3)
- 收藏
- 关注
原创 Batch Normalization总结
Batch Normalization为什么要进行BN呢?BN原理BN算法过程BN的作用BN存在的问题Batch normalization是在batch上,对batch size(即样本数)、feature map特征图的高度、宽度做归一化,而保留通道数的维度。BN对较小的batch size效果不好。BN适用于固定深度的前向神经网络,如CNN,不适用于RNN。GN是group normalization,将channel分组,然后再做归一化。每个子图表示一个特征图,其中N为批量,C为通道,(H,
2021-01-22 00:00:58 410 1
原创 CNN卷积神经网络中的stride、padding、channel以及特征图尺寸的计算
CNN卷积神经网络中的stride、padding、channel以及特征图尺寸的计算1. stride步幅2. padding填充3. channel通道4. 计算及例子总结:1. stride步幅stride:卷积时的采样间隔设置步幅的目的是希望减小输入参数的数目,减少计算量。stride参数的值就是缩小的倍数,比如步幅为2,就对输入的特征图做2倍下采样,注意步幅并不代表输出时输入的1stride\frac{1}{stride}stride12. padding填充padding:在输入特
2021-01-20 01:18:53 16802 5
原创 Resnet详解:从原理到结构
在学习resnet的过程中看了很多文章,整理出这篇笔记,希望在整理过程中对resnet的结构和特点有一个更深刻的了解,也希望可以帮到同样在学习resnet的小伙伴。
2021-01-18 18:59:35 41511 3
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人