在anaconda的已有环境中安装torch,conda中安装matplotlib

如何在anaconda的已有环境中安装torch:
可以安装在GPU和CPU, 这里介绍了将torch安装在CPU
1.首先pytorch官网: https://pytorch.org/,从pytorch官网复制你想下载相应pytorch版本的指令,我选取了Conda和CPU,
在这里插入图片描述
2. 复制Run this Command 到Anaconda Prompt,等待,
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  1. 中途Proceed选择y即可下载完成
    在这里插入图片描述
    将torch安装在CPU成功。

安装matplotlib

接下来安装matplotlib,
网址:https://matplotlib.org/,在管理员Anaconda Prompt 中输入 conda install matplotlib,安装matplotlib。
在这里插入图片描述
学习中的一点见解,需要改进之处,敬请留言!

### 在 Conda 虚拟环境中正确安装 PyTorch #### 创建并激活虚拟环境 为了确保开发环境的独立性和稳定性,在安装 PyTorch 前需先创建一个新的 Conda 虚拟环境。通过以下命令完成此操作: ```bash conda create -n pytorch_env python=3.9 ``` 上述命令用于创建名为 `pytorch_env` 的新环境,并指定 Python 版本为 3.9[^1]。 激活该虚拟环境可执行如下命令: ```bash conda activate pytorch_env ``` #### 查看 CUDA 和 cuDNN 支持情况 在安装 PyTorch 之前,确认当前系统的 CUDA 和 cuDNN 配置至关重要。可以通过以下方法验证 GPU 是否支持以及驱动程序是否已正确安装: 运行 NVIDIA 提供的工具来检测显卡状态: ```bash nvidia-smi ``` 如果未显示任何设备信息,则可能需要重新安装或更新 NVIDIA 显卡驱动程序[^2]。 #### 安装 PyTorch 及其依赖项 访问官方 PyTorch 网站 (https://pytorch.org/get-started/locally/) 获取适合您硬件条件的具体安装指令集。通常情况下推荐采用 Conda 渠道简化整个过程: 对于带有 CUDA 加速功能的支持版本, 使用下面这条语句即可一步到位地完成安装工作: ```bash conda install pytorch torchvision torchaudio cudatoolkit=11.8 -c pytorch -c nvidia ``` 这里指定了 cuda toolkit 的具体版本号为 11.8 ,可以根据实际需求调整至其他可用选项之一;同时引入了额外两个常用的视觉处理与音频信号分析扩展模块 —— TorchVision 和 Torchaudio[^4]。 另外一种方式则是借助 pip 工具手动下载对应平台架构下的预编译 whl 文件形式分发版进行本地化部署,比如针对 Windows 平台上的特定组合情形可以这样操作: ```bash pip install https://download.pytorch.org/whl/cu117/torch-2.0.1%2Bcu117-cp39-cp39-win_amd64.whl ``` 最后记得核查最终成果以保证一切正常运作无误: ```bash python -c "import torch;print(torch.__version__);print(torch.cuda.is_available())" ``` 以上脚本片段能够打印出所加载的核心库版本号以及判断是否存在有效的GPU资源可供调用[^3]。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值