机器学习—深度学习

本文探讨了在机器学习中,模型在训练和测试集上的表现差异,重点关注欠拟合导致的训练效果差和过拟合引发的泛化能力不足问题,解释了这两个概念及其影响。
摘要由CSDN通过智能技术生成

欠拟合:模型在训练集上表现很差,没法学习到数据背后的规律。

过拟合:模型在训练集上表现很好,但在测试集上却表现很差,泛化能力差。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值