提高数据的颜值!一起看看Pandas中的那些Style

本文介绍了如何利用Pandas的style模块对DataFrame和Series进行美化输出,包括格式化数值、高亮特殊值、背景渐变色阶以及数据条样式。通过实例展示了如何突出显示最大值和最小值,以及创建迷你图,如顾客消费金额和数量的分布图,使得数据可视化更加直观,便于数据分析和理解。
摘要由CSDN通过智能技术生成

Pandas的style用法在大多数教程中见的比较少,它主要是用来美化DataFrameSeries的输出,能够更加直观地显示数据结果。

下面采用某商店的零售数据集,通过实际的应用场景,来介绍一下style中那些实用的方法。

首先导入相应的包和数据集

import pandas as pd
import numpy as np

data = data = pd.read_excel('./data/sales.xlsx')
data.head()

数据集中的特征有订单号、顾客姓名、商品名、数量、单价、金额以及对应的购买日期。

输出格式化

style中的format函数可以对输出进行格式化,比如在上述的数据集中,求每位顾客的消费平均金额和总金额,要求保留两位小数并显示相应的币种。

(data.groupby(['姓名'])['金额'].agg(['mean','sum'])
                             .head(5)
                             .style
                             .format('${0:,.2f}'))

又或求每位顾客的总消费金额(保留2位小数)及其对应的占比情况(以百分数形式展现)

consumer_sales = data.groupby('姓名')['金额'].agg(['sum']).reset_index()
consumer_sales['消费金额占比'] = consumer_sales['sum'] / consumer_sales['sum'].sum()
(consumer_sales.head(5)
              .style
              .format({'sum':'${0:,.0f}', '消费金额占比': '{:.2%}'}))

突出显示特殊值

style还可以突出显示数据中的特殊值,比如高亮显示数据中的最大(highlight_max)、最小值(highlight_min)。

#求每个月的销售总金额,并分别用红色、绿色高亮显示最大值和最小值
monthly_sales = data.resample('M',on='日期')['金额'].agg(['sum']).reset_index()
monthly_sales['pct_of_total'] = monthly_sales['sum'] / data['金额'].sum()

format_dict = {'sum':'${0:,.0f}', '日期': '{:%Y-%m}', 'pct_of_total': '{:.2%}'}
(monthly_sales.style
              .format(format_dict)
              .highlight_max(color='#cd4f39')
              .highlight_min(color='lightgreen'))

色阶样式

运用stylebackground_gradient方法,还可以实现类似于Excel的条件格式中的显示色阶样式,用颜色深浅来直观表示数据大小。

import seaborn as sns

cm = sns.light_palette("green", as_cmap=True)

(data.groupby(['姓名'])[['数量','金额']]
     .agg(['sum'])
     .head(5)
     .style
     .background_gradient(cmap=cm))

数据条样式

同样的,对于Excel的条件格式中的数据条样式,可以用style中的bar达到类似效果,通过颜色条的长短可以直观显示数值的大小。

(monthly_sales.style
              .format(format_dict)
              .bar(color='#FFA07A', vmin=100_000, subset=['sum'], align='zero')
              .bar(color='lightgreen', vmin=0, subset=['pct_of_total'], align='zero')
)

迷你图

最后介绍一个简单好用的骚操作——sparklines的运用,它能够以字符串的形式展现一个迷你的数据特征图。

假设我现在有一个这样的需求,就是想看看所有用户的购买数量和金额的大体分布情况。

按照往常的思路,可以用可视化的形式绘制出来,但是这样稍显复杂,使用sparklines则可以简单达到这种效果。

首先需要安装sparklines这个包

pip install sparklines

因为需求的实现需要用的groupby函数,所以先定义一个处理函数

from sparklines import sparklines

# 定义sparklines函数用于展现数据分布
def sparkline_str(x):
    bins = np.histogram(x)[0]
    sl = ''.join(sparklines(bins))
    return sl

# 定义groupby之后的列名
sparkline_str.__name__ = "分布图"

data.groupby('姓名')[['数量', '金额']].agg(['mean', sparkline_str])

这样一来,就比较清晰直观地展现了每个用户的消费数量分布和消费金额分布,进而可以根据这些特征对用户的消费行为进行进一步的研究。

sparklines的功能还是挺Cool挺实用的,更具体的用法可以去看看sparklines的文档。

参考资料:https://pbpython.com/styling-pa

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值