- 博客(227)
- 收藏
- 关注
原创 超级全的停用词整理
,?、。“”《》!,:;?人民末##末啊阿哎哎呀哎哟唉俺俺们按按照吧吧哒把罢了被本本着比比方比如鄙人彼彼此边别别的别说并并且不比不成不单不但不独不管不光不过不仅不拘不论不怕不然不如不特不惟不问不只朝朝着趁趁着乘冲除除此之外除非除了此此间此外从从而打待但但是当当着到得的的话等等等地第叮咚对对于多多少而而况而且而是
2020-09-07 20:10:36 42238
原创 这个人间终究值得
2020.1.18—2020.4.18\color{red}{2020.1.18—2020.4.18}2020.1.18—2020.4.18,整整3个月的时间。鬼知道在这三个月里我经历了什么?但上帝知道呀!漫长的春节2020年1月18号即去年农历腊月24,和老大从长沙\color{red}{长沙}长沙开车回湖北老家过年。万万没有想到,这趟回家居然呆了两个多月,度过了最漫长的一个春节。一个...
2020-04-25 10:12:02 684
原创 基于长短期记忆模型LSTM的股票预测
大家好,我是Peter~介绍一个基于深度学习实战项目:基于长短期记忆模型LSTM的股价预测,包含:1、https://easyai.tech/ai-definition/lstm/2、https://zh.d2l.ai/chapter_recurrent-modern/lstm.html生成数据基于yfinance生成数据:收盘价 Closing Price可视化效果从上图中可以观察到,5日和10日均线能够更好地捕捉到数据的变化趋势。pct_change 函数在 pandas
2024-10-19 17:53:34 955
原创 pandas处理时间序列-基础入门
公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~Pandas 是一个强大的 Python 数据分析库,它提供了非常灵活和高效的方式来处理时间序列数据。。
2024-10-19 15:46:56 866
原创 8种高级特征处理技术
公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~本文主要介绍处理数值变量特征工程,将介绍使用Python的Scikit-Learn库、Numpy等工具处理数值的高级特征工程技术,旨在提升机器学习模型的效能。
2024-10-19 15:43:52 1001
原创 时间序列神器Prophet教程-入门教程
Prophet是一种基于加法模型的时间序列预测工具,由Facebook的数据科学团队开发。它可以处理时间序列数据中的多种复杂性,包括趋势变化、季节性变化以及节假日效应等。官网地址:https://facebook.github.io/prophet/docs/quick_start.html#python-api在Prophet中,时间序列被分解为多个组成部分,包括趋势、季节性、节假日效应和误差项。这些组成部分可以分别进行建模和预测,然后将它们组合起来得到最终的预测结果。
2024-09-06 09:00:00 585
原创 机器学习:基于scikit-learn进行特征工程
公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~今天给大家分享如何基于机器学习建模全能包scikit-learn进行特征工程feature-engineering。
2024-07-22 09:10:04 653
转载 10大最受欢迎的深度学习算法
深度学习(Deep Learning, 简称DL)是一种基于人工神经网络的机器学习算法,其核心在于通过多层神经网络结构,自动地从数据中学习并提取特征,进而进行预测、分类或生成等任务。这种学习方式使得计算机能够模仿人类的思考过程,从而在处理复杂任务时表现出更高的智能水平。神经网络的结构类似于人脑,由人工神经元(也称为节点)组成。输入层隐藏层输出层数据以输入的形式为每个节点提供信息。该节点将输入与随机权重相乘,计算它们,并添加偏差。最后,应用非线性函数(也称为激活函数)来确定激活哪个神经元。
2024-07-18 16:16:07 106
原创 深度学习在Li电池RUL、SOH和电池热管理中的研究进展与应用
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~今天给大家分享一篇关于的文献综述。文献基本信息介绍:本文系统介绍了Deep Learning深度学习的不同方法在锂电池剩余使用寿命(RUL)、健康状态(SOH)和电池热管理(BTM)预测中的应用。本文综述从预测性能、优点和缺点等方面评估了不同的深度学习方法来进行电池估计和预测。此外,本文还讨论了上述应用中影响充放电循环、复杂环境、动态条件和不同电池类型的不同算法的特点、成就、局限性和改进方向。MORE。
2024-07-18 15:47:25 1046
原创 机器学习扩展包MLXtend绘制多种图形
使用自定义的类别名:二分类默认是0-1;多分类默认是0,1,2,3…conf_mat=multiclass_array, # 多分类矩阵class_names=names, # 使用自定义的类别名colorbar=True, # 颜色柱show_absolute=False, # 不显示绝对值show_normed=True # 是否标准化plt.show()cmap="GnBu_r", # 颜色柱fontcolor_threshold=1 # 字体颜色阈值设置plt.show()
2024-06-07 14:54:57 708
原创 机器学习扩展包MLXtend绘制分类模型决策边界
from mlxtend.data import iris_data # 内置数据集plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号# 导入和切分数据X = X[:,:2] # 选择前2个特征建模# 切分数据集# 绘制决策边界y,clf=svm,legend=2,X_highlight=X_test, # 高亮数据。
2024-06-07 14:54:06 820
原创 8招让Python代码更优雅
公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~大家知道《Python之禅》吗?(The Zen of Python)是Python编程语言的设计哲学,它包含了一组简洁而富有智慧的格言,旨在指导Python开发者编写高质量的代码。这些格言可以通过在Python解释器中输入来查看。right。
2024-06-07 14:52:35 1142
原创 基于密度的聚类算法DBSCAN详解!
DBSCAN(Density-Based Spatial Clustering of Applications with Noise,基于密度的带有噪声的空间聚类应用)是一种基于密度的聚类算法。密度聚类算法一般假定类别是可以通过样本分布的紧密程度来决定。同一个类别中,样本之间是紧密相连的,也就说通过将紧密相连的样本划分为一类,这样就生成了一个聚类类别。关于DBSCAN到底是如何实现聚类的?一个关键点:DBSCAN是基于一组邻域来描述样本集的紧密程度,参数ϵMinPtsϵMinPt。
2024-06-03 17:20:08 3181
原创 强大的机器学习建模扩展包:mlxtend
公众号:尤而小屋编辑:Peter作者:Peter大家好,我是Peter~今天给大家介绍一个强大的机器学习建模扩展包:mlxtend。mlxtend(machine learning extensions,机器学习扩展)是一个用于日常数据分析、机器学习建模的有用Python库。mlxtend可以用作模型的可解释性,包括统计评估、数据模式、图像提取等。mlxtend是一个Python第三方库,用于支持机器学习和数据分析任务。
2024-06-03 17:17:50 355
原创 Keras3.0重磅来袭
在方法的主体中,实现了一个常规的训练更新,类似于您已经熟悉的内容。重要的是,我们通过计算损失,它包装了传递给compile()的损失函数。else:官方学习地址:https://keras.io/guides/writing_a_custom_training_loop_in_torch/
2024-01-19 11:54:26 697
原创 利用Python实现随机采样
本文详细地介绍基于Python的第三方库random和numpy.random模块进行随机生成数据和随机采样的过程。MORE。
2023-09-15 23:50:45 768
原创 机器学习:10种方法解决模型过拟合
L1 正则化,通常也被称为Lasso 正则化(Least Absolute Shrinkage and Selection Operator),是通过在损失函数中添加 L1 范数(参数绝对值之和)惩罚项,来约束模型的参数。L1 正则化的目标是使模型参数趋向于稀疏,即让一些参数为零,从而实现特征选择和减少模型复杂度的效果。
2023-09-15 23:49:50 3845
原创 机器学习10大必备算法
通过计算每个codebook向量与新数据实例之间的距离来找到最相似的邻居(最佳匹配),然后返回最佳匹配单元的类别值或在回归情况下的实际值作为预测。同时,只有这些离得近的数据点才和超平面的定义和分类器的构造有关,这些点被称为支持向量,他们支持或定义超平面。当然,你尝试的算法必须和你的问题相切合,其中的门道便是机器学习的主要任务。这类事件被称为维度诅咒。在机器学习领域,有种说法叫做“世上没有免费的午餐”,简而言之,它是指没有任何一种算法能在每个问题上都能有最好的效果,这个理论在监督学习方面体现得尤为重要。
2023-09-15 23:47:56 223
原创 Python深度学习-Keras》精华笔记4:解决深度学习回归问题
公众号:尤而小屋作者:Peter编辑:Peter持续更新《Python深度学习》一书的精华内容,仅作为学习笔记分享。。
2023-09-11 21:59:04 368
原创 《Python深度学习-Keras》精华笔记3:解决深度学习多分类问题
持续更新《Python深度学习》一书的精华内容,仅作为学习笔记分享。本文是第三篇:介绍如何使用Keras解决Python深度学习中的多分类问题。多分类问题和二分类问题的区别注意两点:机器学习中的路透社数据集是一个非常常用的数据集,它包含来自新闻专线的文本数据,主要用于文本分类任务。这个数据集是由路透社新闻机构提供的,包含了大量的新闻文章,共计22类分类标签。In [1]:训练集和标签In [2]:In [3]:数据查看In [4]:Out[4]:In [5]:Out[5]:查看label中
2023-09-11 21:57:42 368
原创 一文讲透机器学习超参数调优!
机器学习超参数是在开始学习过程之前设置值的参数,而不是通过训练得到的参数数据。超参数是在模型训练之外设置的选项,不会在训练过程中被优化或更改。相反,需要在训练之前手动设置它们,并且对模型的性能有很大的影响。超参数优化库(Hyperparameter Optimization Library)是一种用于自动化超参数优化的软件库或工具。这些库使用不同的算法和技术,以实现自动化超参数搜索和优化过程。超参数优化库通常提供易于使用的接口,允许用户定义要优化的超参数和目标函数。
2023-09-11 21:56:19 1740
原创 数据科学家必备的20个Python库
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~小屋里面一直在输出关于数据科学领域的文章,绝大部分都是基于Python,少量的MySQL(MySQL存储数据用)。本文重点给大家介绍Python中科学领域常用的20个库。
2023-09-11 21:54:32 476
原创 科研绘图,别忘Origin!
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~官网地址:https://www.originlab.com/Origin是OriginLab公司出品的较流行的专业函数绘图软件,是专为不同科研领域的科学工作者进行绘图和数据分析而设计的。因此,Origin提供了大量的数据分析和绘图工具,可以满足对不同数据分析、函数拟合和科技作图的需求。
2023-09-11 21:52:57 2366
原创 《Python深度学习-Keras》精华笔记2:解决深度学习二分类问题
公众号:尤而小屋作者:Peter编辑:Peter持续更新《Python深度学习》一书的精华内容,仅作为学习笔记分享。运行环境:Python3.9.13 + Keras2.12.0 + tensorflow2.12.0。
2023-08-01 14:19:46 328
原创 《Python深度学习-Keras》精华笔记1:深度学习数学基础及张量
公众号:尤而小屋作者:Peter编辑:Peter持续更新《Python深度学习》一书的精华内容,仅作为学习笔记分享。
2023-08-01 11:10:29 191
原创 10分钟掌握seaborn绘制多子图
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~本文介绍如何使用seaborn绘制多子图。
2023-08-01 09:48:23 3211
转载 50个绝佳的机器学习数据集
外国自媒体mlmemoirs根据github、福布斯、CMU官网等信息,整理了一张50个最佳机器学习公共数据集的榜单,Peter为大家分享一下~
2023-07-31 09:10:46 244
原创 深度学习在Li电池RUL、SOH和电池热管理中的研究进展与应用
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~今天给大家分享一篇关于的文献综述。文献基本信息介绍:本文系统介绍了Deep Learning深度学习的不同方法在锂电池剩余使用寿命(RUL)、健康状态(SOH)和电池热管理(BTM)预测中的应用。本文综述从预测性能、优点和缺点等方面评估了不同的深度学习方法来进行电池估计和预测。此外,本文还讨论了上述应用中影响充放电循环、复杂环境、动态条件和不同电池类型的不同算法的特点、成就、局限性和改进方向。MORE。
2023-07-06 00:15:07 764
原创 python进阶:7招展开嵌套列表
后面会考虑非全部列表的数据(比如列表和数字)和多层嵌套。如何快速理解python的extend函数,给个案例。如果有更好的方法,留言区欢迎讨论交流~大家好,我是Peter~
2023-03-01 22:36:20 1084
原创 机器学习算法竞赛实战:如何看到机器学习竞赛问题?
更新《机器学习算法竞赛实战》一书的阅读笔记,更多详细的内容请阅读原书。什么场景下需要处理样本不均衡问题?
2023-02-22 23:59:52 268
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人