问题
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。
(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)
题目数据保证答案符合 32 位带符号整数范围。
示例
输入:s = "rabbbit", t = "rabbit"
输出:3
解释:
如下图所示, 有 3 种可以从 s 中得到 "rabbit" 的方案。
(上箭头符号 ^ 表示选取的字母)
rabbbit
^^^^ ^^
rabbbit
^^ ^^^^
rabbbit
^^^ ^^^
思路
回溯法实现
之前有用回溯发实现过按顺序取所有子集,直接代码展示出来,文章https://blog.csdn.net/m0_54790354/article/details/113248803?spm=1001.2014.3001.5501,详见子集I的实现;
但是超时;
动态规划
- 以s = “babgbag”, t = "bag"为示例,思路如下
祭出二维矩阵dp,dp[i][j]分别代表第t[i-1], s[j-1],具体思路如下表null “” b a b g b a g “” 1 1 1 1 1 1 1 1 b 0 1 1 2 2 3 3 3 a g - 如上图所示,dp[i][j]的值,取决于t[i-1] 和 s[j-1]是否相等
t[i-1] == s[j-1]时, dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
t[i-1] != s[j-1]时, dp[i][j] = dp[i-1][j]
代码实现
动规
class Solution:
def numDistinct(self, s: str, t: str) -> int:
len_s = len(s)
len_t = len(t)
dp = [[0 for i in range(len_s + 1)] for j in range(len_t + 1)]
dp[0] = [1 for m in range(len_s+1)]
for i in range(1, len_t+1):
for j in range(1, len_s+1):
if t[i-1] == s[j-1]:
dp[i][j] = dp[i-1][j-1] + dp[i][j-1]
else:
dp[i][j] = dp[i][j-1]
return dp[-1][-1]