115. 不同的子序列

问题

给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。
字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。
(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)
题目数据保证答案符合 32 位带符号整数范围。

示例

输入:s = "rabbbit", t = "rabbit"
输出:3
解释:
如下图所示, 有 3 种可以从 s 中得到 "rabbit" 的方案。
(上箭头符号 ^ 表示选取的字母)
rabbbit
^^^^ ^^
rabbbit
^^ ^^^^
rabbbit
^^^ ^^^

思路

回溯法实现

之前有用回溯发实现过按顺序取所有子集,直接代码展示出来,文章https://blog.csdn.net/m0_54790354/article/details/113248803?spm=1001.2014.3001.5501,详见子集I的实现;
但是超时;

动态规划
  • 以s = “babgbag”, t = "bag"为示例,思路如下
    祭出二维矩阵dp,dp[i][j]分别代表第t[i-1], s[j-1],具体思路如下表
    null“”babgbag
    “”11111111
    b01122333
    a
    g
  • 如上图所示,dp[i][j]的值,取决于t[i-1] 和 s[j-1]是否相等
    t[i-1] == s[j-1]时, dp[i][j] = dp[i-1][j-1] + dp[i-1][j]
    t[i-1] != s[j-1]时, dp[i][j] = dp[i-1][j]

代码实现

动规
class Solution:
    def numDistinct(self, s: str, t: str) -> int:
        len_s = len(s)
        len_t = len(t)

        dp = [[0 for i in range(len_s + 1)] for j in range(len_t + 1)]

        dp[0] = [1 for m in range(len_s+1)]

        for i in range(1, len_t+1):
            for j in range(1, len_s+1):
                if t[i-1] == s[j-1]:
                    dp[i][j] = dp[i-1][j-1] + dp[i][j-1]
                else:
                    dp[i][j] = dp[i][j-1]

        return dp[-1][-1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值