文章目录
在单体应用中,如果我们对共享数据不进行加锁操作,会出现数据一致性问题,我们的解决办法通常是加锁。
在分布式架构中,我们同样会遇到数据共享操作问题,本文章使用Redis
来解决分布式架构中的数据一致性问题。
1. 单机数据一致性
单机数据一致性架构如下图所示:多个可客户访问同一个服务器,连接同一个数据库。
场景描述:客户端模拟购买商品过程,在Redis
中设定库存总数剩100个
,多个客户端同时并发购买。
@RestController
public class IndexController1 {
@Autowired
StringRedisTemplate template;
@RequestMapping("/buy1")
public String index(){
// Redis中存有goods:001号商品,数量为100
String result = template.opsForValue().get("goods:001");
// 获取到剩余商品数
int total = result == null ? 0 : Integer.parseInt(result);
if( total > 0 ){
// 剩余商品数大于0 ,则进行扣减
int realTotal = total -1;
// 将商品数回写数据库
template.opsForValue().set("goods:001",String.valueOf(realTotal));
System.out.println("购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001");
return "购买商品成功,库存还剩:"+realTotal +"件, 服务端口为8001";
}else{
System.out.println("购买商品失败,服务端口为8001");
}
return "购买商品失败,服务端口为8001";
}
}
使用Jmeter
模拟高并发场景,测试结果如下:
测试结果出现多个用户购买同一商品,发生了数据不一致问题!
解决办法:单体应用的情况下,对并发的操作进行加锁操作,保证对数据的操作具有原子性
-
synchronized
-
ReentrantLock
@RestController
public class IndexController2 {// 使用ReentrantLock锁解决单体应用的并发问题 Lock lock = new ReentrantLock(); @Autowired StringRedisTemplate template; @RequestMapping("/buy2") public String index() { lock.lock(); try { String result = template.opsForValue().get("goods:001"); int total = result ==