在本科毕设中,常常需要写车辆路径优化问题,我正在小红书更新比较体系的讲解,方便读者用于迅速投入到学习/研究当中。
小红书:72 【运筹优化--车辆路径优化 - Akise Aru | 小红书 - 你的生活指南】 😆 INsW1a1PNYuuLRB 😆 https://www.xiaohongshu.com/discovery/item/675ea5ba000000000603f05b?source=webshare&xhsshare=pc_web&xsec_token=ABsE8SQe6Z3xCFhC6zXOVlpK5jReKFiA9VVdNg8OL52B0=&xsec_source=pc_share
考虑到小红书的内容似乎不被搜索引擎直接搜到,这里把我在小红书的博文搬到这里来。
在打数学建模比赛的时候,需要提前意识到一些基本概念:
数学模型:
简单来说,这是对现实问题/比赛问题的抽象表达,用数学语言表示;比如微分方程、线性规划、马尔科夫链等等。
求解算法:
有了数学模型,可以找出不同的算法来求解模型。因此严格来说,两者在比赛中是可以分为两个人的任务,后者往往比前者难(因为学生中会写程序的相对少;也因为如果模型搞错了,算法也会出问题)。
下面是ai的回答(比较详细、学术)
1. 数学模型的关键要素
-
研究对象(问题背景)
- 首先要明确要解决的实际问题是什么,比如交通优化、资源分配、生态平衡、疫情预测、金融风险测度等。
- 要对问题进行具体描述,并收集相关数据和信息。
-
模型假设
- 在建立模型时,为简化或聚焦问题,通常会做出一些合理的假设。
- 假设的选择需要兼顾真实情况与模型的可操作性,如忽略次要因素、简化某些复杂关系等。
-
变量选取和参数设定
- 根据问题背景,需要定义哪些量是需要关注的(自变量、因变量、状态变量、控制变量等)。
- 还要确认模型中需要哪些参数,参数反映系统固有的特性或外部环境对系统的影响。
-
数学关系式或函数
- 将问题中的因果关系、约束条件等用数学方程或不等式等形式表达出来。
- 常见的表达方式包括:线性或非线性方程组、微分方程组、概率统计模型等。
-
求解方法
- 确定用什么方法来求解模型:解析法(手推公式)、数值方法、算法(如线性规划、动态规划、模拟退火等)。
- 在建模比赛中,往往会结合实际数据进行仿真、迭代、优化等。
-
结果分析与检验
- 求出结果后,需要对模型结果的有效性与合理性进行分析。
- 可以进行灵敏度分析或用真实数据进行检验,不断修正或改进模型。
2. 常见类型的数学模型
-
线性规划模型
- 用于处理线性目标函数与线性约束的一类模型,比如资源分配、生产优化等。
- 常见的求解工具:单纯形法、内点法等。
-
回归模型
- 针对大规模数据,通过回归分析找到自变量与因变量之间的统计关系。
- 常见的有线性回归、逻辑回归、多元回归、非线性回归等。
-
时间序列预测模型
- 针对具有时间关联的数据(如股票价格、销量等)进行预测。
- 常见的模型包括ARIMA、指数平滑、LSTM(深度学习)等。
-
微分方程模型
- 对动态系统进行刻画,如人口增长、传染病传播、物理运动等。
- 常见形式包括常微分方程(ODE)、偏微分方程(PDE)。
-
马尔可夫链与排队论
- 用于处理随机过程相关问题,如客户排队、系统可靠性、转移概率等。
-
博弈论模型
- 分析多个参与方相互影响与决策的情况,如市场竞争、谈判策略等。
-
网络与图论模型
- 用于描述网络结构(如社交网络、交通网络、物流网络)以及在网络上进行的优化,比如最短路径、最大流-最小割等。
-
机器学习/深度学习模型
- 面对海量、高维数据时,可以借助机器学习算法(如SVM、随机森林、神经网络等)寻找更复杂的模式和规律。
以上是ai的回答
运筹优化模型
其中,运筹优化模型,属于数学模型中的一类:
我关注的车辆路径优化,又属于运筹优化模型中的一类
运筹优化算法
运筹优化算法,是解决运筹优化模型时,常用的一些算法。两者很多时候是多对多的关系:一种模型可以用多种算法求解,一种算法也可以通过改造来求解多种模型。
我本科比较关注的是启发式算法,因为当时觉得遗传算法听上去很高端呵呵呵。