一张照片攻破人脸识别系统:能点头摇头张嘴,网友:太可怕_t型人脸面具攻击视频

文章讨论了如何利用DeepFake技术,如paGAN,实现实时动态图像合成,从而突破传统的人脸识别系统,引发关于网络安全的担忧。作者还提供了网络安全学习路径和工具推荐,强调了系统化学习的重要性。
摘要由CSDN通过智能技术生成

原本照片里的人物也会随之做出一样的行为。

虽然我们知道一张静态图,现在大概率是无法解锁人脸识别。

但这样动起来之后,结果可就不一样了。

于是,人脸识别系统便自然可以轻松通过:

 图源:央视网微博

央视网曝出的这段视频,成功引发了网友们的热议。

许多网友对这种攻破人脸识别系统的方式表示“可怕”:

让照片动起来的DeepFake

虽然央视网这次并没有直接点名具体所涉及到的技术。

但从效果上来看,DeepFake就可以做到这点。

DeepFake大家很熟悉了,简单来说有两种基本方法。

第一种是将两个人的大量面部照片输入编码器,编码器在压缩图像的同时提取出其面部共同特征。

然后在恢复图像时,把第一个人的压缩照片输入另一个人的解码器中复原,产生“交换“面部的效果。

第二种是生成对抗网络(GAN),让两个AI算法(生成器和判别器)相互对抗。

由生成器输入随机噪声并转化为图像添加到真实图像中,经判别器判别。

经过大量的循环和训练后,二者都得到改进,能够输出不存在的逼真人脸。

 图源:3DCAT

但传统的DeepFake需要有大量的原始数据,并且要经过好几天的训练才能达到高质量的效果。

若是想达到实时的效果,怎么办?

黎颢(没错,就是那个杀马特教授)团队就提出,将DeepFake和他此前做的paGAN结合到一起,做了一个新系统。

如此以来,在不需要大量训练数据的情况下,这个系统也可以实时地渲染出合成图像。

paGAN弥补了DeepFake需要大量训练数据的不足,简单来说就是把训练的工作量都放到台下去做。

实时渲染有三个问题需要克服:

需要处理大量数据以及使用更深层网络训练更好的模型,需要生成高分辨率帧并且能够并行或者安排任务。

而paGAN预先经过大量的训练,分析过很多图片的面部和表情。这样内部数据模型就可以在接触到新的图形时做出“条件反射”。

再加上paGAN使用了新的ML方法和更好的底层优化,达到了实时渲染的效果。

 图源:3DCAT

张钹:人脸识别算法非常不安全

而这样逼真的DeepFake人脸处理,只是诸多方法中的一种。

每一种方法都是人脸识别系统的潜在威胁。

这说明视频中展示的人脸识别算法还是存在着很大的漏洞。

本人从事网路安全工作12年,曾在2个大厂工作过,安全服务、售后服务、售前、攻防比赛、安全讲师、销售经理等职位都做过,对这个行业了解比较全面。

最近遍览了各种网络安全类的文章,内容参差不齐,其中不伐有大佬倾力教学,也有各种不良机构浑水摸鱼,在收到几条私信,发现大家对一套完整的系统的网络安全从学习路线到学习资料,甚至是工具有着不小的需求。

最后,我将这部分内容融会贯通成了一套282G的网络安全资料包,所有类目条理清晰,知识点层层递进,需要的小伙伴可以点击下方小卡片领取哦!下面就开始进入正题,如何从一个萌新一步一步进入网络安全行业。

学习路线图

其中最为瞩目也是最为基础的就是网络安全学习路线图,这里我给大家分享一份打磨了3个月,已经更新到4.0版本的网络安全学习路线图。

相比起繁琐的文字,还是生动的视频教程更加适合零基础的同学们学习,这里也是整理了一份与上述学习路线一一对应的网络安全视频教程。

网络安全工具箱

当然,当你入门之后,仅仅是视频教程已经不能满足你的需求了,你肯定需要学习各种工具的使用以及大量的实战项目,这里也分享一份我自己整理的网络安全入门工具以及使用教程和实战。

项目实战

最后就是项目实战,这里带来的是SRC资料&HW资料,毕竟实战是检验真理的唯一标准嘛~

面试题

归根结底,我们的最终目的都是为了就业,所以这份结合了多位朋友的亲身经验打磨的面试题合集你绝对不能错过!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以点击这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值