2021-04-25

ACM第八周,动态规划区间DP(未完,待续)

区间DP和线性DP还是很相似的,线性dp是以一个点为对象,建立状态方程,在整个区间中找到最优解; 而区间dp则是以一个区间为对象,找出边界条件从小区间开始不断求解出最终总的区间问题。
区间DP主要是把一个大区间拆分成几个小区间,先求小区间的最优值,然后合并起来求大区间的最优值。
区间DP实现代码的一般规则:

}memset(dp, 0x3f, sizeof(dp));
for (int i = 1; i <= n; i++)
        dp[i][i] = 0;
        for (int len = 2; len <= n; len++)
{
    for (int i = 1, j = len; j <= n; i++, j++)

        {
        }
    }
    
    

动态规划的区间DP问题主要分为三中模型。

石子问题

石子合并一条直线上有N堆石子,现在要将所有石子合并成一堆,每次只能合并相邻的两堆,合并花费为新合成的一堆石子的数量,求最小的花费。

题解:
当合并的石子为一堆时候:分数为0

当合并的石子为两堆时候:合并分数为相邻两堆石子的个数之和

当合并的石子为三堆时候:合并分数为min(第i堆石子与第i+1石子合并的分数+三堆石子总数,第i+1堆石子与第i+2石子合并的分数+三堆石子总数);

状态变量:m[i][j]第i堆至第j堆石子合并时候的分数,stone[i]表示第i堆石子个数

状态转移方程:m[i][j]=min(m[i][k]+m[k+1][j]+sum);sum表示第i堆石子至第j堆石子总数,也是最后一次合并的分数

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include <bits/stdc++.h>
using namespace std;
int w[105],dp[105][105],dp1[105][105],sum[105];
const int inf=0x3f;
              int main()
{
    int n;
    while(cin>>n)
    {
        memset(dp,0,sizeof(dp));
        memset(dp1,inf,sizeof(dp));
        memset(sum,0,sizeof(sum));
        for(int i=1; i<=n; i++)
        {
            cin>>w[i];
            sum[i]=sum[i-1]+w[i];
            dp1[i][i]=0;
        }
        for(int len=2; len<=n; len++)
        {
            for(int i=1; i<=n; i++)
            {
                int j=i+len-1;
                for(int k=i; k<j; k++)
                {
                    dp[i][j]=max(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]);
                    dp1[i][j]=min(dp1[i][j],dp1[i][k]+dp1[k+1][j]+sum[j]-sum[i-1]);
                }
            }
        }
        cout<<dp1[1][n]<<" "<<dp[1][n]<<endl;
    }
    return 0;
}

使用python中的pymsql完成如下:表结构与数据创建 1. 建立 `users` 表和 `orders` 表。 `users` 表有用户ID、用户名、年龄字段,(id,name,age) `orders` 表有订单ID、订单日期、订单金额,用户id字段。(id,order_date,amount,user_id) 2 两表的id作为主键,`orders` 表用户id为users的外键 3 插入数据 `users` (1, '张三', 18), (2, '李四', 20), (3, '王五', 22), (4, '赵六', 25), (5, '钱七', 28); `orders` (1, '2021-09-01', 500, 1), (2, '2021-09-02', 1000, 2), (3, '2021-09-03', 600, 3), (4, '2021-09-04', 800, 4), (5, '2021-09-05', 1500, 5), (6, '2021-09-06', 1200, 3), (7, '2021-09-07', 2000, 1), (8, '2021-09-08', 300, 2), (9, '2021-09-09', 700, 5), (10, '2021-09-10', 900, 4); 查询语句 1. 查询订单总金额 2. 查询所有用户的平均年龄,并将结果四舍五入保留两位小数。 3. 查询订单总数最多的用户的姓名和订单总数。 4. 查询所有不重复的年龄。 5. 查询订单日期在2021年9月1日至9月4日之间的订单总金额。 6. 查询年龄不大于25岁的用户的订单数量,并按照降序排序。 7. 查询订单总金额排名前3的用户的姓名和订单总金额。 8. 查询订单总金额最大的用户的姓名和订单总金额。 9. 查询订单总金额最小的用户的姓名和订单总金额。 10. 查询所有名字中含有“李”的用户,按照名字升序排序。 11. 查询所有年龄大于20岁的用户,按照年龄降序排序,并只显示前5条记录。 12. 查询每个用户的订单数量和订单总金额,并按照总金额降序排序。
06-03
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值