- 博客(7)
- 问答 (1)
- 收藏
- 关注
原创 Semantic Self-adaptation:Enhancing Generalization with a Single Sample 阅读笔记
1.摘要尽管经过多年的研究,域外泛化仍然是语义分割深度网络的一个关键弱点。以前的研究依赖于静态模型的假设,即一旦训练过程完成,模型参数在测试时保持固定。在这项工作中,我们用一种自适应的语义分割方法来挑战这一前提,该方法根据每个输入样本调整推理过程。自适应在两个层次上运行。首先,它采用自监督损耗,根据输入图像定制网络中卷积层的参数。第二,在批量标准化层中,自适应近似整个测试数据的平均值和方差,假设不可用。它通过在训练和来自单个测试样本的参考分布之间进行插值来实现这一点。为了实证分析我们的自适应推理策略,我们开
2022-09-19 20:37:06 669 1
原创 Style Neophile: Constantly Seeking Novel Styles for Domain Generalization 阅读笔记
为了合成新样式,我们首先通过随机噪声抖动源图像样式来生成新样式的可信候选,然后采样这些候选的子集,这些子集是多样的,并且不能很好地由观察到的样式的近似分布表示。使用(1)存储源图像样式和先前合成的新样式的样式队列,以及(2)测量采样的源样式原型和新样式的质量的评分函数,有效地实现了该采样过程。(2) 选择表示源样式队列的样式分布的源样式原型。为了实现这一想法,我们的框架不断生成合成的但看似合理的样式,这些样式不同于之前迭代中观察到的样式,并用这些合成样式替换训练图像的样式,同时保留图像的语义信息。
2022-09-14 10:02:44 847
原创 PCL: Proxy-based Contrastive Learning for Domain Generalization 阅读笔记
为了解决这一问题,我们提出了一种新的基于代理的对比学习方法,该方法将原始样本到样本关系替换为代理到样本关系,显著缓解了正对齐问题。(b) 典型的基于对比的损失(例如,监督对比损失)利用样本与样本之间的关系,其中来自同一类的不同域样本可以被视为正对。基于对比的损失主要集中于探索丰富的样本到样本关系,而基于代理的损失使用代理来表示子训练集,实现了安全和快速的收敛,但缺少一些语义关系。我们从经验上发现,一些传统的基于对比的方法对领域泛化任务没有贡献,因此我们推测存在正对齐问题,其中复数对可能会阻碍模型泛化。
2022-09-14 09:45:10 551
原创 。。。。。。
import osclass BatchRename(): def __init__(self,r): #self.path = 'F:/yufanhuaziliao/Learning_to_diversify-main/Learning_to_diversify-main/home/data1/VLCS/CALTECH/person/' #表示需要命名处理的文件夹目录,复制地址后注意反斜杠 self.path = r def rename(self).
2021-11-20 17:27:29 78
原创 批量修改的
import osclass BatchRename(): def __init__(self,r): #self.path = 'F:/yufanhuaziliao/Learning_to_diversify-main/Learning_to_diversify-main/home/data1/VLCS/CALTECH/person/' #表示需要命名处理的文件夹目录,复制地址后注意反斜杠 self.path = r def rename(self).
2021-11-20 17:20:32 95
空空如也
torch 载入mnist数据集进行图片拼接显示出现
2021-08-01
TA创建的收藏夹 TA关注的收藏夹
TA关注的人