2021-03-02

Moment Generating Function

Definition

For a random variable X X X, if E [ e t x ] E[e^{tx}] E[etx] exists ∀ t ∈ ( − h , h ) \forall t \in(-h, h) t(h,h) for some h > 0 h>0 h>0, moment generating function M ( t ) = E [ e t x ] M(t)=E[e^{tx}] M(t)=E[etx]

Properties

X X X is a random variable with MGF M x ( t ) M_x(t) Mx(t) that exists ∀ t ∈ ( − h , h ) \forall t\in (-h,h) t(h,h) where h > 0 h>0 h>0,

  • Y = a X + b Y=aX+b Y=aX+b where a , b ∈ R a,b\in \R a,bR and a ≠ 0 a\ne 0 a=0. Then, M y ( t ) = e b t M x ( a t ) ∀ t ∈ ( − h ∣ a ∣ , h ∣ a ∣ ) M_y(t)=e^{bt}M_x(at)\forall t\in (-\frac{h}{\vert a\vert},\frac{h}{\vert a\vert}) My(t)=ebtMx(at)t(ah,ah)
  • M ( 0 ) = 1 M(0)=1 M(0)=1 ,and
  • M ( k ) ( 0 ) = E [ x k ] M^{(k)}(0)=E[x^k] M(k)(0)=E[xk] where M ( k ) ( t ) = d k d t k M ( t ) M^{(k)}(t)=\frac{d^k}{dt^k}M(t) M(k)(t)=dtkdkM(t) for k = 1 , 2 , . . . k=1,2,... k=1,2,...
  • Uniqueness: M x ( t ) = M y ( t ) ∀ t ∈ ( − h , h )    ⟺    X M_x(t)=M_y(t)\forall t\in(-h, h)\iff X Mx(t)=My(t)t(h,h)X and Y Y Y have the same distribution

Multivariate Random Function

Definition

Suppose X X X and Y Y Y are r . v r.v r.v defined on the sample space S S S,

  • Joint C D F CDF CDF of X X X and Y Y Y:
    F ( x , y ) = P ( X ≤ x , Y ≤ y ⏟ i n t e r s e c t i o n   o f   2   e v e n t s ) ∀ ( x , y ) ∈ R 2 F(x,y)=P(\underbrace{X\le x,Y\le y}_{intersection\space of\space 2\space events})\forall(x,y)\in\R^2 F(x,y)=P(intersection of 2 events Xx,Yy)(x,y)R2
  • Marginal C D F CDF CDF of X X X and Y Y Y: (holds for both discrete and continuous r . v . r.v. r.v.)
    F 1 ( x ) / F x ( x ) = lim ⁡ y → ∞ F ( x , y ) = P ( X ≤ x ) , ∀ x ∈ R F_1(x)/F_x(x)= \lim\limits_{y\rarr \infty}F(x,y)=P(X\le x),\forall x\in \R F1(x)/Fx(x)=ylimF(x,y)=P(Xx),xR
    F 2 ( y ) / F y ( y ) = lim ⁡ x → ∞ F ( x , y ) = P ( Y ≤ y ) , ∀ y ∈ R F_2(y)/F_y(y)= \lim\limits_{x\rarr \infty}F(x,y)=P(Y\le y),\forall y\in \R F2(y)/Fy(y)=xlimF(x,y)=P(Yy),yR
  • Marginal P D F PDF PDF of X X X and Y Y Y:
    • For discrete r . v . r.v. r.v.,
      • f x ( x ) = P ( X = x ) = ∑ a l l   y f ( x , y ) ∀ x ∈ R f_x(x)=P(X=x)=\displaystyle\sum_{all\space y}f(x,y)\forall x\in\R fx(x)=P(X=x)=all yf(x,y)xR
      • f y ( y ) = P ( Y = y ) = ∑ a l l   x f ( x , y ) ∀ y ∈ R f_y(y)=P(Y=y)=\displaystyle\sum_{all\space x}f(x,y)\forall y\in\R fy(y)=P(Y=y)=all xf(x,y)yR
    • For continuous r . v . r.v. r.v.,
      • f x ( x ) = ∫ − ∞ ∞ f ( x , y ) d y ∀ x ∈ R f_x(x)=\int_{-\infty}^{\infty}f(x,y)dy\forall x\in\R fx(x)=f(x,y)dyxR
      • f y ( y ) = ∫ − ∞ ∞ f ( x , y ) d x ∀ y ∈ R f_y(y)=\int_{-\infty}^{\infty}f(x,y)dx\forall y\in\R fy(y)=f(x,y)dxyR

Independence

Recall: Independent events are P ( A ∩ B ) = P ( A ) P ( B ) P(A\cap B)=P(A)P(B) P(AB)=P(A)P(B)

Theorem

X X X ans Y Y Y are r . v . r.v. r.v.

  1. If joint CDF F ( x , y ) F(x,y) F(x,y), marginal CDFs F 1 ( x ) F_1(x) F1(x) and F 2 ( y ) F_2(y) F2(y), then X X X and Y Y Y are independent    ⟺    F ( x , y ) = F 1 ( x ) F 2 ( y ) ∀ ( x , y ) ∈ R 2 \iff F(x,y)=F_1(x)F_2(y)\forall(x,y)\in\R^2 F(x,y)=F1(x)F2(y)(x,y)R2
  2. If joint p d f / p m f pdf/pmf pdf/pmf f ( x , y ) f(x,y) f(x,y) and marginal p d f s / p m f s pdfs/pmfs pdfs/pmfs f 1 ( x ) f_1(x) f1(x) and f 2 ( y ) f_2(y) f2(y) and A 1 = { s : f 1 ( x ) > 0 } A_1=\{s:f_1(x)>0\} A1={s:f1(x)>0}, A 2 = { y : f 2 ( y ) > 0 } A_2=\{y:f_2(y)>0\} A2={y:f2(y)>0}, X X X and Y Y Y are independent    ⟺    f ( x , y ) = f 1 ( x ) f 2 ( y ) ∀ ( x , y ) ∈ ( A 1 × A 2 ) \iff f(x,y)=f_1(x)f_2(y)\forall(x,y)\in(A_1\times A_2) f(x,y)=f1(x)f2(y)(x,y)(A1×A2)
  3. (factorization theorem of independence) If joint p d f / p m f pdf/pmf pdf/pmf f ( x , y ) f(x,y) f(x,y) and A 1 = { s : f 1 ( x ) > 0 } A_1=\{s:f_1(x)>0\} A1={s:f1(x)>0}, A 2 = { y : f 2 ( y ) > 0 } A_2=\{y:f_2(y)>0\} A2={y:f2(y)>0}, X X X and Y Y Y are independent    ⟺    ∃ g ( y ) ≥ 0 \iff\exist g(y)\ge 0 g(y)0 such that f ( x , y ) = g ( x ) h ( y ) ∀ ( x , y ) ∈ ( A 1 × A 2 ) f(x,y)=g(x)h(y)\forall(x,y)\in(A_1\times A_2) f(x,y)=g(x)h(y)(x,y)(A1×A2)
  4. If support A A A is not rectangular, then X X X and Y Y Y must be dependent i . e . i.e. i.e.
    ∃ ( x , y ) s . t . x ∈ A 1 , y ∈ A 2 , b u t ( x , y ) ∉ A   i . e . \exist(x,y)s.t.x\in A_1,y\in A_2, but(x,y)\notin A \space i.e. (x,y)s.t.xA1,yA2,but(x,y)/A i.e.
    f 1 ( x ) > 0 , f 2 ( y ) > 0 , f ( x , y ) = 0 f_1(x)>0, f_2(y)>0,f(x,y)=0 f1(x)>0,f2(y)>0,f(x,y)=0
  5. if X X X and Y Y Y are independent random variables, then if g , h g,h g,h are functions, then g ( x ) g(x) g(x) and h ( y ) h(y) h(y) are independent. (the reverse is false)

Joint Expectations

Definition

  • Suppose X X X and Y Y Y are bivariate discrete random variables and h ( x , y ) h(x,y) h(x,y) is a real-valued function. Then, if ∑ ( x , y ) ∈ A ∣ h ( x , y ) ∣ f ( x , y ) < ∞ \displaystyle\sum_{(x,y)\in A}\vert h(x,y)\vert f(x,y)<\infty (x,y)Ah(x,y)f(x,y)<, then E [ h ( x , y ) ] = ∑ ( x , y ) ∈ A h ( x , y ) f ( x , y ) E[h(x,y)]=\displaystyle\sum_{(x,y)\in A}h(x,y)f(x,y) E[h(x,y)]=(x,y)Ah(x,y)f(x,y). Otherwise, E [ h ( x , y ) ] E[h(x,y)] E[h(x,y)] DNE.
  • Suppose X X X and Y Y Y are bivariate continuous random variables and h ( x , y ) h(x,y) h(x,y) is a real-valued function. Then, if ∫ − ∞ ∞ ∫ − ∞ ∞ ∣ h ( x , y ) ∣ f ( x , y ) d x d y < ∞ , E [ h ( x , y ) ] = ∫ − ∞ ∞ ∫ − ∞ ∞ h ( x , y ) f ( x , y ) d x d y \int_{-\infty}^\infty\int_{-\infty}^\infty\vert h(x,y)\vert f(x,y)dxdy<\infty,E[h(x,y)]=\int_{-\infty}^\infty\int_{-\infty}^\infty h(x,y) f(x,y)dxdy h(x,y)f(x,y)dxdy<,E[h(x,y)]=h(x,y)f(x,y)dxdy. Otherwise, E [ h ( x , y ] E[h(x,y] E[h(x,y] DNE.

Properties

  1. Linearity
  2. If X X X and Y Y Y are independent, then ∀ f u n c t i o n   g , h , E [ g ( X ) h ( Y ) ] = E [ g ( X ) ] E [ h ( Y ) ] \forall function\space g,h,E[g(X)h(Y)]=E[g(X)]E[h(Y)] function g,h,E[g(X)h(Y)]=E[g(X)]E[h(Y)]

Covariance

C o v ( X , Y ) = E [ ( x − μ x ) ( y − μ y ) ] , w h e r e   μ x = E [ X ] , μ y = E [ Y ] Cov(X,Y)=E[(x-\mu_x)(y-\mu_y)],where\space\mu_x=E[X], \mu_y=E[Y] Cov(X,Y)=E[(xμx)(yμy)],where μx=E[X],μy=E[Y]
C o v ( X , Y ) = 0 Cov(X,Y)=0 Cov(X,Y)=0, we say X X X and Y Y Y are uncorrelated

Properties

  1. C o v ( X , Y ) = E [ X Y ] − E [ X ] E [ Y ] Cov(X,Y)=E[XY]-E[X]E[Y] Cov(X,Y)=E[XY]E[X]E[Y]
  2. X X X and Y Y Y are independent    ⟹    C o v ( X , Y ) = 0 \implies Cov(X,Y)=0 Cov(X,Y)=0
  3. C o v ( X , X ) = V a r ( X ) Cov(X,X)=Var(X) Cov(X,X)=Var(X)
  4. V a r ( a X + b Y ) = a 2 V a r ( X ) + b 2 V a r ( Y ) + 2 a b C o v ( X , Y ) Var(aX+bY)=a^2Var(X)+b^2Var(Y)+2abCov(X,Y) Var(aX+bY)=a2Var(X)+b2Var(Y)+2abCov(X,Y)
  5. V a r [ ∑ i = 1 n a i X i ] = ∑ i = 1 n a i 2 V a r ( X i ) + ∑ i ≠ j a i a j C o v ( X i , X j ) Var[\sum_{i=1}^na_iX_i]=\sum_{i=1}^na_i^2Var(X_i)+\sum_{i\ne j}a_ia_jCov(X_i,X_j) Var[i=1naiXi]=i=1nai2Var(Xi)+i=jaiajCov(Xi,Xj)
  6. C o v ( X + Y , Z ) = C o v ( X , Y ) + C o v ( Y , Z ) Cov(X+Y,Z)=Cov(X,Y)+Cov(Y,Z) Cov(X+Y,Z)=Cov(X,Y)+Cov(Y,Z)

Correlation Coefficient

ρ ( x , y ) = C o v ( X , Y ) V a r ( X ) V a r ( Y ) \rho(x,y)=\frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}} ρ(x,y)=Var(X) Var(Y) Cov(X,Y)
− 1 < ρ < 1 -1<\rho<1 1<ρ<1 measures the strength of linear relationship between X X X and Y Y Y

Conditional Distribution

P ( A ∣ B ) = P ( A ∩ B ) P ( B )   , g i v e n   P ( B ) > 0 P(A\mid B)=\frac{P(A\cap B)}{P(B)} \space ,given \space P(B)>0 P(AB)=P(B)P(AB) ,given P(B)>0
Suppose X X X and Y Y Y are bivariate random variables with joint pmf f ( x , y ) f(x,y) f(x,y), then

  1. conditional pmf/pdf of X X X given Y = y Y=y Y=y is
    f 1 ( x ∣ y ) = f ( x , y ) f 2 ( y )   , g i v e n   f 2 ( y ) > 0 f_1(x\mid y)=\frac{f(x,y)}{f_2(y)}\space,given\space f_2(y)>0 f1(xy)=f2(y)f(x,y) ,given f2(y)>0
  2. conditional pmf/pdf of Y Y Y given X = x X=x X=x is
    f 2 ( y ∣ x ) = f ( x , y ) f 1 ( x )   , g i v e n   f 1 ( x ) > 0 f_2(y\mid x)=\frac{f(x,y)}{f_1(x)}\space,given\space f_1(x)>0 f2(yx)=f1(x)f(x,y) ,given f1(x)>0

Properties

X X X and Y Y Y are random variables with marginal pdf/pmf f 1 ( x ) f_1(x) f1(x) and f 2 ( y ) f_2(y) f2(y) and marginal support A 1 A_1 A1 and A 2 A_2 A2

  1. X X X and Y Y Y are independent    ⟺    f 1 ( x ∣ y ) = f 1 ( x ) ∀ x ∈ A 1 ∨ f 2 ( y ∣ x ) = f 2 ( y ) ∀ y ∈ A 2 \iff f_1(x\mid y)=f_1(x)\forall x\in A_1 \lor f_2(y\mid x)=f_2(y)\forall y\in A_2 f1(xy)=f1(x)xA1f2(yx)=f2(y)yA2
  2. Product Rule: f ( x , y ) = f 1 ( x ∣ y ) f 2 ( y ) = f 2 ( y ∣ x ) f 1 ( x ) f(x,y)=f_1(x\mid y)f_2(y)=f_2(y\mid x)f_1(x) f(x,y)=f1(xy)f2(y)=f2(yx)f1(x)

Conditional Expectations

Function g g g, the conditional expectation of g ( Y ) g(Y) g(Y) given X = x X=x X=x is:
E [ g ( Y ) ∣ X = x ] = { ∑ a l l   y g ( y ) f x ( y ∣ x ) if Y is discrete r.v. ∫ − ∞ ∞ g ( y ) f 2 ( y ∣ x ) d y if Y is continuous r.v. , u n l e s s ∑ a l l   y g ( y ) f x ( y ∣ x ) / ∫ − ∞ ∞ g ( y ) f 2 ( y ∣ x ) d y  does not converge,  in which case E [ g ( Y ) ∣ X = x ] D N E E[g(Y)\mid X=x] = \begin{cases} \displaystyle\sum_{all\space y}g(y)f_x(y\mid x) &\text{if Y is discrete r.v.} \\ \int_{-\infty}^\infty g(y)f_2(y\mid x)dy &\text{if Y is continuous r.v.} \end{cases}, unless \sum_{all\space y}g(y)f_x(y\mid x)/\int_{-\infty}^\infty g(y)f_2(y\mid x)dy \text{ does not converge,\\ in which case} E[g(Y)\mid X=x] DNE E[g(Y)X=x]=all yg(y)fx(yx)g(y)f2(yx)dyif Y is discrete r.v.if Y is continuous r.v.,unlessall yg(y)fx(yx)/g(y)f2(yx)dy does not converge, in which caseE[g(Y)X=x]DNE

  • g ( Y ) = Y g(Y)=Y g(Y)=Y, E [ Y ∣ X = x ] E[Y\mid X=x] E[YX=x] is called the conditional mean
  • g ( y ) = ( y − E [ Y ∣ X = x ] ) 2    ⟹    V a r [ Y ∣ X = x ] = E [ ( Y − E [ Y ∣ X = x ] ) 2 ∣ X = x ] = E [ Y 2 ∣ X = x ] − ( E [ y ∣ X = x ] ) 2 g(y)=(y-E[Y\mid X=x])^2\implies \begin{aligned}Var[Y\mid X=x] &= E\big[(Y-E[Y\mid X=x])^2\mid X=x\big]\\&=E[Y^2\mid X=x]-\big(E[y\mid X=x]\big)^2\end{aligned} g(y)=(yE[YX=x])2Var[YX=x]=E[(YE[YX=x])2X=x]=E[Y2X=x](E[yX=x])2 is called conditional variance

Properties

  1. Independence: If X X X and Y Y Y are independent, ∀ g ( ⋅ ) a n d   h ( ⋅ ) , E [ g ( x ) ∣ Y = y ] = E [ g ( x ) ] \forall g(\sdot) and\space h(\sdot),E[g(x)\mid Y=y] = E[g(x)] g()and h(),E[g(x)Y=y]=E[g(x)] and E [ h ( y ) ∣ X = x ] = E [ h ( y ) ] E[h(y)\mid X=x] = E[h(y)] E[h(y)X=x]=E[h(y)]
  2. Substitution Rule: E [ h ( X , Y ) ∣ X = x ] = E [ h ( x , Y ) ∣ X = x ] E[h(X,Y)\mid X=x]=E[h(x,Y)\mid X=x] E[h(X,Y)X=x]=E[h(x,Y)X=x]
  3. Double Expectation: E [ G ( Y ) ] = E [ E [ g ( Y ) ∣ X ] ] E[G(Y)]=E\big[E[g(Y)\mid X]\big] E[G(Y)]=E[E[g(Y)X]]
  4. V a r [ Y ] = E [ V a r ( Y ∣ X ) ⏟ f u n c t i o n   h ( x ) = V a r [ Y ∣ X = x ]   a p p l i e d   t o   r . v .   X ] + V a r [ E [ Y ∣ X ] ] Var[Y]=E[\underbrace{Var(Y\mid X)}_{function\space h(x)=Var[Y\mid X = x]\space applied \space to \space r.v.\space X}]+Var[E[Y\vert X]] Var[Y]=E[function h(x)=Var[YX=x] applied to r.v. X Var(YX)]+Var[E[YX]]
    1. E [ V a r ( Y ∣ X ) ] E[Var(Y\vert X)] E[Var(YX)] :
      • find V a r ( Y ∣ X ) Var(Y\vert X) Var(YX)
        • figure out the expression for h ( x ) = V a r ( Y ∣ X ) h(x)=Var(Y\vert X) h(x)=Var(YX)
        • substitute X X X for big x x x in that expression
      • calculate E [ h ( X ) ] E[h(X)] E[h(X)]
    2. V a r [ E [ Y ∣ X ] ] Var[E[Y\vert X]] Var[E[YX]]:
      • find E [ Y ∣ X ] E[Y\vert X] E[YX]
      • calculate V a r [ E [ Y ∣ X ] ⏞ h ˜ (x) ] Var[\overbrace{E[Y\vert X]}^\text{\~{h}(x)}] Var[E[YX] h˜(x)]

Joint Moment Generating Function(MGF)

X X X and Y Y Y are random variables. If E [ e t 1 x + t 2 y ] E[e^{t_1x+t_2y}] E[et1x+t2y] exists ∀ t 1 ∈ ( − h 1 , h 1 ) \forall t_1\in(-h_1,h_1) t1(h1,h1) and t 2 ∈ ( − h 2 , h 2 ) t_2\in(-h_2,h_2) t2(h2,h2) for h 1 , h 2 > 0 h_1,h_2>0 h1,h2>0
Then, M ( t 1 , t 2 ) = E [ e t 1 x + t 2 y ] ∀ t 1 , t 2 M(t_1,t_2)=E[e^{t_1x+t_2y}]\forall t_1,t_2 M(t1,t2)=E[et1x+t2y]t1,t2such that E [ ⋅ ] E[\sdot] E[] exists is called the joint MGF

Marginal joint MGF

Given M ( t 1 , t 2 ) M(t_1,t_2) M(t1,t2)

  • M x ( t 1 ) = M ( t 1 , 0 ) = E [ e t 1 x + 0 y ] = E [ e t 1 x ] M_x(t_1)=M(t_1,0)=E[e^{t_1x+0y}]=E[e^{t_1x}] Mx(t1)=M(t1,0)=E[et1x+0y]=E[et1x]
  • M y ( t 2 ) = M ( 0 , t 2 ) = E [ e 0 x + t 2 y ] = E [ e t 2 y ] M_y(t_2)=M(0,t_2)=E[e^{0x+t_2y}]=E[e^{t_2y}] My(t2)=M(0,t2)=E[e0x+t2y]=E[et2y]

Properties

X X X and Y Y Y are random variables with joint MGF M ( t 1 , t 2 ) M(t_1,t_2) M(t1,t2). Then,
X X X and Y Y Y are independent    ⟺    M ( t 1 , t 2 ) = M x ( t 1 ) M y ( t 2 ) \iff M(t_1,t_2)=M_x(t_1)M_y(t_2) M(t1,t2)=Mx(t1)My(t2)

Multinomial Distribution

( X 1 , X 2 , . . . , X k ) ∼ M u l t i n o m i a l ( n ; p 1 , p 2 , . . . , p k )  is discrete random variable with joint pmf f ( x 1 , x 2 , . . . , x k ) = { n ! x 1 ! x 2 ! . . . x k ! p 1 x 1 p 2 x 2 . . . p k x k x i = 0 , 1 , . . . , n , i = 1 , 2 , . . . , k , ∑ i = 1 k x 1 = n 0 o . w . f o r   0 < p i < 1 , ∑ i = 1 k p i = 1 (X_1,X_2,...,X_k)\sim Multinomial(n;p_1,p_2,...,p_k) \text{ is discrete random variable with joint pmf} \\ f(x_1,x_2,...,x_k)=\begin{cases}\frac{n!}{x_1!x_2!...x_k!}p_1^{x_1}p_2^{x_2}...p_k^{x_k} &x_i=0,1,...,n, i=1,2,...,k,\sum_{i=1}^kx_1=n\\0 &o.w. \end{cases} \\ for\space 0<p_i<1, \sum_{i=1}^kp_i=1 (X1,X2,...,Xk)Multinomial(n;p1,p2,...,pk) is discrete random variable with joint pmff(x1,x2,...,xk)={x1!x2!...xk!n!p1x1p2x2...pkxk0xi=0,1,...,n,i=1,2,...,k,i=1kx1=no.w.for 0<pi<1,i=1kpi=1
Concrete example: k boxes randomly pick one of the k boxes, probability of picking the i t h i^{th} ith box being p i p_i pi. Repeat picking n times independently. X i X_i Xi is number of times box i i i was picked, i = 1 , 2 , . . . , k i=1,2,...,k i=1,2,...,k

Properties

( X 1 , X 2 , . . . , X k ) ∼ M u l t i n o m i a l ( n ; p 1 , p 2 , . . . , p k ) (X_1,X_2,...,X_k)\sim Multinomial(n;p_1,p_2,...,p_k) (X1,X2,...,Xk)Multinomial(n;p1,p2,...,pk)

  1. Joint MGF M ( t 1 , t 2 , . . . , t k ) = E [ e t 1 x 1 + t 2 x 2 + . . . + t k x k ] = ( p 1 e t 1 + . . . + p k e t k ) n ∀ ( t 1 , t 2 , . . . , t k ) ∈ R k M(t_1,t_2,...,t_k)=E[e^{t_1x_1+t_2x_2+...+t_kx_k}]=(p_1e^{t_1}+...+p_ke^{t_k})^n\forall (t_1,t_2,...,t_k)\in \R^k M(t1,t2,...,tk)=E[et1x1+t2x2+...+tkxk]=(p1et1+...+pketk)n(t1,t2,...,tk)Rk
  2. X i ∼ B i n o m i a l ( n , p i ) f o r   i = 1 , 2 , . . . , k X_i\sim Binomial(n,p_i)for\space i=1,2,...,k XiBinomial(n,pi)for i=1,2,...,k
  3. T = X i + X j ( i ≠ j )    ⟹    T ∼ B i n o m i a l ( n , p i + p j ) T=X_i+X_j(i\ne j)\implies T\sim Binomial(n,p_i+p_j) T=Xi+Xj(i=j)TBinomial(n,pi+pj)
  4. E [ X i ] = n p i V a r [ X i ] = n p i ( 1 − p i ) C o v ( X i , X j ) = − n p i p j ( i ≠ j ) E[X_i]=np_i\\Var[X_i]=np_i(1-p_i)\\Cov(X_i,X_j)=-np_ip_j(i\ne j) E[Xi]=npiVar[Xi]=npi(1pi)Cov(Xi,Xj)=npipj(i=j)
  5. X i ∣ X j = x j ∼ B i n ( n − x j , p i 1 − p j ) , i ≠ j X_i\mid X_j=x_j\sim Bin(n-x_j,\frac{p_i}{1-p_j}),i\ne j XiXj=xjBin(nxj,1pjpi),i=j
  6. X i ∣ X i + X j = t ∼ B i n ( t , p i p i + p j ) , i ≠ j X_i\mid X_i+X_j=t\sim Bin(t,\frac{p_i}{p_i+p_j}),i\ne j XiXi+Xj=tBin(t,pi+pjpi),i=j

Bivariate Normal Distribution

x → = ( x 1 x 2 ) ∼ B V N ( μ → , Σ )   w h e r e   X 1   a n d   X 2  are continutous random variables with joint pdf  f ( x 1 , x 2 ) = 1 2 π ∣ Σ ∣ 1 / 2 e x p { − ( x − μ ) Σ − 1 ( x − μ ) T 2 } , w h e r e   x = ( x 1 x 2 ) , μ = ( μ 1 μ 2 ) , Σ = ( σ 1 2 ρ σ 1 σ 2 ρ σ 1 σ 2 σ 2 2 ) i s   p o s i t i v e   d e f i n i t e \overrightarrow{x}=\begin{pmatrix}x_1\\x_2\end{pmatrix}\sim BVN(\overrightarrow{\mu},\Sigma)\ where\space X_1\space and\space X_2 \text{ are continutous random variables with joint pdf }\\f(x_1,x_2)=\frac{1}{2\pi |\Sigma|^{1/2}}exp\{\frac{-(x-\mu)\Sigma^{-1}(x-\mu)^T}{2}\},\\ where\ x=\begin{pmatrix}x_1\\x_2\end{pmatrix},\mu=\begin{pmatrix}\mu_1\\ \mu_2\end{pmatrix},\Sigma=\begin{pmatrix}\sigma_1^2 & \rho\sigma_1\sigma_2\\ \rho\sigma_1\sigma_2 & \sigma_2^2\end{pmatrix} is\ positive\ definite x =(x1x2)BVN(μ ,Σ) where X1 and X2 are continutous random variables with joint pdf f(x1,x2)=2πΣ1/21exp{2(xμ)Σ1(xμ)T},where x=(x1x2),μ=(μ1μ2),Σ=(σ12ρσ1σ2ρσ1σ2σ22)is positive definite

Properties

  1. X 1 , X 2 X_1,X_2 X1,X2 has joint MGF M ( t 1 , t 2 ) = E [ e t 1 x 1 + t 2 x 2 ] = e x p { t T μ + 1 2 t T Σ t } ∀ t = ( t 1 t 2 ) ∈ R 2 M(t_1,t_2)=E[e^{t_1x_1+t_2x_2}]=exp\{t^T\mu+\frac{1}{2}t^T\Sigma t\}\forall t=\begin{pmatrix}t_1\\t_2\end{pmatrix}\in\R^2 M(t1,t2)=E[et1x1+t2x2]=exp{tTμ+21tTΣt}t=(t1t2)R2
  2. M x 1 ( t ) = M ( t , 0 ) = e x p { t 1 μ 1 + 1 2 t 1 2 σ 1 2 } → X 1 ∼ N ( μ , σ 1 2 ) M x 2 ( t ) = M ( 0 , t ) = e x p { t 2 μ 2 + 1 2 t 2 2 σ 2 2 } → X 2 ∼ N ( μ , σ 2 2 ) M_{x_1}(t)=M(t,0)=exp\{t_1\mu_1+\frac{1}{2}t_1^2\sigma_1^2\}\to X_1\sim N(\mu,\sigma_1^2)\\M_{x_2}(t)=M(0,t)=exp\{t_2\mu_2+\frac{1}{2}t_2^2\sigma_2^2\}\to X_2\sim N(\mu,\sigma_2^2) Mx1(t)=M(t,0)=exp{t1μ1+21t12σ12}X1N(μ,σ12)Mx2(t)=M(0,t)=exp{t2μ2+21t22σ22}X2N(μ,σ22)
  3. C o v ( X 1 , X 2 ) = ρ σ 1 σ 2 Cov(X_1,X_2)=\rho\sigma_1\sigma_2 Cov(X1,X2)=ρσ1σ2
  4. ρ = 0    ⟺    X 1   a n d   X 2 \rho=0\iff X_1\ and\ X_2 ρ=0X1 and X2 are independent and correlated
  5. c = ( c 1 c 2 ) ≠ 0 ,   c T X = c 1 x 1 + c 2 x 2 ∼ N ( μ T c , c T Σ c ) c=\begin{pmatrix}c_1\\c_2\end{pmatrix}\ne 0,\ c^TX=c_1x_1+c_2x_2\sim N(\mu^Tc,c^T\Sigma c) c=(c1c2)=0, cTX=c1x1+c2x2N(μTc,cTΣc)
  6. Nonsingular matrix A ∈ R 2 × 2 , b ∈ R 2 ,   t h e n   A X + b ∼ B V N ( A μ , A Σ A T ) A\in\R^{2\times 2},b\in\R^2,\ then\ AX+b\sim BVN(A\mu,A\Sigma A^T) AR2×2,bR2, then AX+bBVN(Aμ,AΣAT)
  7. ( ( x − μ ) T Σ − 1 ( x − μ ) ) ∼ χ 2 \Big((x-\mu)^T\Sigma^{-1}(x-\mu)\Big)\sim\chi^2 ((xμ)TΣ1(xμ))χ2
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。
Go语言(也称为Golang)是由Google开发的一种静态强类型、编译型的编程语言。它旨在成为一门简单、高效、安全和并发的编程语言,特别适用于构建高性能的服务器和分布式系统。以下是Go语言的一些主要特点和优势: 简洁性:Go语言的语法简单直观,易于学习和使用。它避免了复杂的语法特性,如继承、重载等,转而采用组合和接口来实现代码的复用和扩展。 高性能:Go语言具有出色的性能,可以媲美C和C++。它使用静态类型系统和编译型语言的优势,能够生成高效的机器码。 并发性:Go语言内置了对并发的支持,通过轻量级的goroutine和channel机制,可以轻松实现并发编程。这使得Go语言在构建高性能的服务器和分布式系统时具有天然的优势。 安全性:Go语言具有强大的类型系统和内存管理机制,能够减少运行时错误和内存泄漏等问题。它还支持编译时检查,可以在编译阶段就发现潜在的问题。 标准库:Go语言的标准库非常丰富,包含了大量的实用功能和工具,如网络编程、文件操作、加密解密等。这使得开发者可以更加专注于业务逻辑的实现,而无需花费太多时间在底层功能的实现上。 跨平台:Go语言支持多种操作系统和平台,包括Windows、Linux、macOS等。它使用统一的构建系统(如Go Modules),可以轻松地跨平台编译和运行代码。 开源和社区支持:Go语言是开源的,具有庞大的社区支持和丰富的资源。开发者可以通过社区获取帮助、分享经验和学习资料。 总之,Go语言是一种简单、高效、安全、并发的编程语言,特别适用于构建高性能的服务器和分布式系统。如果你正在寻找一种易于学习和使用的编程语言,并且需要处理大量的并发请求和数据,那么Go语言可能是一个不错的选择。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值