自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(120)
  • 收藏
  • 关注

原创 ROS2学习笔记汇总目录

服务(Service)介绍及常用指令、服务实现(RCLCPP, RCLPY):启动文件(Launch)介绍与编写、ROS2常用工具(RVIZ, RQT):使用FishBot进行自主导航、使用Nav2导航API进行导航。:参数(Param)通信介绍及常用指令、参数之RCLCPP实现。:节点(Node)介绍及基本指令、海龟画图、、rqt可视化。:colcon的进阶指令、话题(Topic)介绍及常用指令。:colcon编译工具的安装及使用、常用指令。:节点启动与常用指令、功能包创建与常用指令。

2025-08-27 17:07:30 930

原创 ROS2 Humble + rtabmap + D435i深度相机实现视觉惯性建图(一)——环境配置

本文介绍了在Ubuntu系统上配置ROS2 Humble环境并安装RealSense深度相机和RTAB-Map的完整流程。主要内容包括:1)安装ROS2基础工具和相关依赖包;2)通过apt安装Intel RealSense SDK和ROS2驱动;3)推荐使用apt安装RTAB-Map核心库和ROS2包,并提供了源码编译的备选方案。文中特别强调了二进制安装的稳定性,并给出了验证安装成功的方法。整个配置过程详细清晰,为后续使用RealSense相机和RTAB-Map进行视觉SLAM开发奠定了基础。

2026-01-15 17:12:51 479

原创 树莓派4B(ARM架构)的Ubuntu 22.04(Jammy)上安装Intel RealSense SDK和ROS2驱动

文章摘要:本文详细介绍了在树莓派4B(ARM架构)上安装Intel RealSense SDK和ROS2驱动的完整流程。内容包括:1)系统准备和依赖安装;2)从源码编译安装RealSense SDK,特别针对ARM架构优化;3)配置ROS2工作空间并安装RealSense ROS驱动;4)测试安装的详细步骤;5)提供Python和C++的示例代码。重点强调了ARM兼容性处理、内核模块配置和性能优化选项,适用于Ubuntu 22.04和ROS2 Humble环境。

2026-01-15 16:34:11 523

原创 Ubuntu 22.04/ROS2 Humble下使用Intel RealSense D435i相机

本文介绍了在ROS2环境中配置和使用Intel RealSense D435i相机的完整流程。主要内容包括:1) 安装RealSense SDK和ROS2驱动的两种方法(二进制安装和源码编译);2) 创建自定义ROS2包的结构和依赖配置;3) 详细的package.xml和CMakeLists.txt配置文件;4) 相机发布者节点的C++实现框架。文章提供了完整的代码示例和命令行操作指南,适合开发者在ROS2 Humble环境下快速部署D435i相机节点,实现图像、深度和IMU数据的发布功能。

2026-01-09 15:10:14 750

原创 ROS2(Humble)——多机通信问题

摘要: ROS2多机通信常见问题及解决方案包括:1) 确保ROS_DOMAIN_ID一致(推荐非零值);2) 检查网络配置和防火墙设置,开放7400-7600端口;3) 配置Fast DDS的发现机制或改用Cyclone DDS;4) 正确设置环境变量(ROS_IP、RMW_IMPLEMENTATION等)。测试步骤包括基础通信测试、节点发现检查及Wireshark抓包分析。推荐统一DOMAIN_ID、关闭防火墙测试、使用静态IP和配置hosts文件,或切换至Cyclone DDS提高稳定性。

2026-01-08 09:01:14 541 1

原创 路径规划——拓扑图路径规划方法(可视图与四叉树)

本文对比分析了两种路径规划方法:可视图法和四叉树法。可视图法通过构建障碍物顶点间的可见性图来寻找精确最短路径,适用于简单场景但计算复杂度高。四叉树法采用多分辨率空间划分,形成层次化结构,能高效处理大规模非均匀环境,获得近似最优路径。两种方法各具优势:可视图法在路径最优性上更优,而四叉树法在计算效率和适应性方面表现更好,适合动态环境。选择方法需根据具体场景需求权衡路径精度与计算成本。

2025-12-05 09:36:36 1694

原创 随笔——路径规划技术的发展脉络与前沿趋势

全覆盖路径规划要求机器人在区域内无遗漏地通过所有空间,其发展围绕如何提升覆盖效率、应对环境不确定性及多机协作展开。路径规划技术从最初的静态、规则化,已发展成为一门处理动态、高维、不确定性问题的关键学科。,其演进紧扣如何提升在复杂场景下的搜索效率、安全性与适应性。路径规划是机器人、自动驾驶等领域的核心问题,其发展经历了从。:在RRT基础上引入“重新布线”机制,实现了。的特点,旨在解决更为现实的复杂应用场景。总体上,它可分为两大分支:追求。全局路径规划旨在找到从起点到终点的。当前,两项技术的研究均呈现出。

2025-11-18 16:38:40 913

原创 随笔——全局路径规划常用方法

本文对比分析了四种经典路径规划算法:A*、RRT*、Hybrid A和韦恩图分割。A在离散空间具有最优性和完备性,但路径存在锯齿;RRT适合高维空间,能渐进优化路径;Hybrid A专为车辆等非完整系统设计,结合连续状态空间搜索和运动学约束;韦恩图分割构建最大安全距离路径但计算复杂。综合评估显示,Hybrid A在实用性上表现最佳(9分),其次是A(8.5分)、RRT*(8分)和韦恩图分割(6.5分)。该分析为不同应用场景下的算法选择提供了参考依据。

2025-11-14 09:51:52 1046

原创 随笔——空间智能机器人

空间智能机器人正处在一个从“专业化工具”向“通用性伙伴”转变的历史性拐点。深度学习、SLAM、大模型和仿真技术是其发展的四大支柱。未来的研究将越来越强调多模态信息的融合、对物理常识的掌握、以及与人类和环境的共情与共生。这条技术路线最终指向的,是创造出能够与人类和谐共处、并极大拓展人类在物理世界中行动边界的新型智能实体。

2025-11-10 15:46:20 925

原创 激光雷达点云在路径规划导航的作用与工作流程

激光雷达通过发射激光束并接收反射信号,生成包含三维坐标的点云数据,为机器人导航提供高精度环境感知。其主要作用体现在三方面:1)环境感知与地图构建(包括实时障碍物检测和SLAM建图);2)精确定位;3)可通行区域分析。应用流程包括数据处理、地图管理、路径规划(全局/局部)和运动控制四个闭环阶段,形成完整的感知-决策-执行系统。激光雷达优势在于厘米级精度、黑暗环境工作能力和3D感知能力,但面临成本高、受天气影响等挑战,仍是自动驾驶领域核心传感器。

2025-10-29 09:55:09 1060

原创 自动驾驶技术全景解析:从感知、决策到控制的演进与挑战

自动驾驶技术发展综述 自动驾驶作为人工智能、传感器技术和车联网融合的革命性突破,跨越了数十年的发展历程。核心技术包括感知、决策和控制三大系统,其中多传感器融合、路径规划和车辆控制是关键技术环节。当前主流方案分为多传感器融合、纯视觉和车路协同三种模式,各具优势。技术瓶颈集中在极端场景应对、交互决策和伦理问题等方面。未来趋势指向车路协同、大模型赋能和算力提升,其最终实现依赖技术进步与社会共识的协同发展。

2025-10-29 09:46:20 1596

原创 PCL学习——点云分割与提取

点云分割算法摘要 本文介绍了两种经典的点云分割方法:RANSAC平面分割和区域生长算法。RANSAC通过随机采样和一致性验证鲁棒地拟合平面模型,适用于含噪声数据,其核心是迭代选择最优内点集并计算平面方程。区域生长算法则基于局部特征相似性,从种子点逐步扩展区域,适合分割具有连续性的表面。文中提供了RANSAC的完整Python实现,包括平面拟合、距离计算和迭代优化过程,并演示了在合成数据上的分割效果。两种方法各具优势,RANSAC对异常值鲁棒,区域生长则能处理更复杂的几何形状。

2025-10-28 09:43:29 704

原创 随笔——YOLO模型及其支持的五种任务

YOLO(You Only Look Once)是一种高效的实时目标检测算法,采用单阶段设计将检测视为回归问题,通过网格划分预测边界框和类别概率。其演进版本从YOLOv1到最新版本不断优化性能,支持目标检测、旋转目标检测、姿态估计、实例分割和图像分类五种任务。评价指标包括交并比(IoU)、精确率、召回率、平均精度(AP)及其衍生指标,针对不同任务采用特定计算方法。YOLO凭借其统一架构和持续优化,成为计算机视觉领域广泛应用的多功能框架。

2025-10-24 15:20:59 639

原创 YOLO学习——图像分割入门 “数据集制作和模型训练”

本文详细介绍了YOLO语义分割模型的安装、数据标注、转换和训练全流程。首先通过Anaconda创建labelme环境并安装工具,使用labelme标注图片生成json文件。然后通过Python脚本将json转换为YOLO可用的txt标注格式,设置类别映射并检查文件对应关系。接着配置训练数据集和yaml文件,使用修改后的训练脚本进行500轮次模型训练。最后加载训练好的模型进行预测测试,结果保存在指定目录。整个过程涵盖了从环境搭建、数据准备到模型训练和测试的完整步骤,并提供了详细的代码实现和路径配置说明。

2025-10-24 15:08:00 1065

原创 解决:[gazebo-1] gzclient: ./OgreMain/include/OgreAxisAlignedBox.h:251: void Ogre::AxisAlignedBox::setE

Gazebo仿真出现Ogre图形引擎断言失败错误,表现为模型边界框的最小坐标大于最大坐标。常见原因包括:模型尺寸设置错误(如负值)、URDF/SDF文件定义异常或世界文件配置问题。建议排查步骤:1)检查模型文件语法;2)使用空世界逐步加载模型定位问题源;3)重点检查magnetic_world21.world及相关模型文件;4)确保所有几何尺寸为正数并验证网格文件有效性。临时解决方案可尝试无图形界面模式运行。该错误通常由模型定义不当引起,需系统检查所有相关几何参数。

2025-10-20 21:08:30 303

原创 解决:OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized.

摘要 这是一个YOLOv11n模型训练过程中的OpenMP库冲突错误报告。训练环境配置包括:Python 3.11.13、CUDA 11.8、RTX 3070显卡(8GB显存)。模型参数显示网络包含181层,约262万个参数,使用AMP混合精度训练。错误发生在数据加载阶段,显示"Fast image access"读取速度异常(显示为278.289.1 MB/s和342.9141.5 MB/s,数值格式异常)。训练配置包括10个epochs、batch size=2、图像尺寸640x64

2025-10-19 11:27:41 507

原创 YOLO学习——训练进阶和预测评价指标

本文介绍了YOLO模型训练与评估的全流程。首先从GitHub下载YOLOv8至v12系列的最小模型(n/s/m),通过修改mytrain.py实现自动化批量训练(100轮次)。训练后使用mypredict.py测试模型效果,并通过调整conf、iou等参数优化预测结果。文章详细讲解了目标检测的核心评价指标:IoU、TP/FP/FN、P/R/F1分数,以及mAP50和mAP50-95的计算方法。最后通过myval.py对验证集和测试集进行评估,对比不同数据集的性能差异。

2025-10-19 11:24:12 1498

原创 ROS2学习——PCD到八叉树地图的转换

Ubuntu 22.04和ROS2 Humble环境下实现PCD到八叉树地图转换的简易指南。首先安装必要的ROS2包和依赖库(octomap、pcl等),然后创建ROS2包并编写转换节点代码。该节点支持从PCD文件读取点云数据,转换为八叉树格式并保存为二进制文件,同时可选发布八叉树消息。关键步骤包括参数配置、PCD文件加载、八叉树创建与更新,以及结果保存与发布。此方案提供了灵活的参数设置(如分辨率、坐标系等),适用于机器人导航与环境建模应用场景。

2025-10-17 17:12:18 362 8

原创 YOLO学习——数据集入门 “制作自己的数据集”

本文介绍了使用YOLOv11模型进行目标检测的完整流程。主要内容包括:1. 数据集获取:通过Roboflow和Kaggle等平台下载现成数据集,或自行采集视频并提取图片;2. 数据标注:使用LabelImg工具手动标注,或采用"半自动标注"方式先训练基础模型再预测标注;3. 数据集划分:随机划分训练集、验证集和测试集;4. 模型训练:配置YAML文件,设置训练参数,监控训练过程;5. 模型评估:通过PR曲线等指标评估模型性能。文章提供了详细的代码示例和参数设置指导,适合初学者快速入门目标

2025-10-17 14:59:36 1943

原创 YOLO学习——训练入门(二)

本文介绍了优化YOLO模型训练性能的实践方法,主要包括:1)切换african-wildlife数据集并解决路径配置问题;2)分析训练资源利用率(CPU/GPU/内存/显存),比较GPU与CPU训练效率差异;3)通过调整imgsz(建议32的倍数)、batchsize(自动选择最佳值)、启用cache="ram"缓存和设置workers=1-2等参数优化训练速度,其中workers设置需权衡内存消耗。实验表明,合理配置后单轮训练时间可从70秒缩短至6-7秒。最后建议保持适度资源占用,避免

2025-10-16 15:26:05 1085

原创 YOLO学习——训练入门(一)

本文介绍了YOLO目标检测模型的训练流程,主要包括以下内容: 准备工作:配置环境,删除旧配置文件确保数据保存位置正确 训练coco8数据集:使用PyCharm创建训练脚本,处理依赖报错和OpenMP冲突问题 训练参数调整:修改epochs数量,控制验证过程,分析训练结果保存路径 数据集配置详解:解析yaml文件结构,说明图片和标签的组织方式 labelimg安装与使用:创建Python3.8环境安装标注工具,可视化训练集和验证集标签 切换不同数据集:包括coco128、medical-pills和brain

2025-10-16 09:55:57 1306

原创 YOLOv11学习——环境配置(二)和使用入门

本文介绍了YOLOv11的环境配置和使用方法。主要内容包括:1. PyCharm安装与YOLO项目配置,包括Python环境设置和Conda解释器选择;2. 创建并运行三个推理脚本文件:mypredict.py实现图片/视频预测,mycam.py实现实时摄像头预测,mytrain.py用于模型训练;3. 详细解析了YOLO模型的预测参数、任务类型(目标检测、分类等)和模型特性,展示了如何获取模型信息(任务类型、可预测类别、参数量);4. 提供了预测选项配置示例,如修改边框线宽和可视化特征图。通过示例代码演示

2025-10-15 17:02:17 1422

原创 YOLOv11学习——环境配置(一)

本文详细介绍了YOLO环境配置的全流程:1)从GitHub下载YOLO源码和模型文件;2)安装Anaconda并配置清华镜像源;3)创建专用Python环境;4)根据显卡型号安装PyTorch(需检查CUDA版本)。文中提供了详细的命令行操作步骤,包括conda/pip镜像设置、环境管理命令、PyTorch安装验证方法等注意事项,确保用户在Windows系统下能顺利完成YOLO目标检测框架的部署。

2025-10-15 11:23:59 2845 1

原创 解决:RealSense D435I相机使用报错

摘要:文档分析了RealSense相机使用中的三个主要问题:USB连接不稳定(频繁断开/重连)、物理连接端口变化以及深度图像压缩配置错误。针对这些问题,提出了硬件和软件两方面的解决方案:硬件上建议检查USB连接质量、更换线缆并优化供电管理;软件上提供了参数配置调整、启动文件修改等具体命令。最后给出rs-enumerate-devices、realsense-viewer等诊断工具的使用建议,以全面解决连接稳定性和配置匹配问题。(149字)

2025-10-12 17:13:11 434

原创 机器人的自主导航与探索——Autonomous Exploration Development Environment(自主探索开发环境)

摘要: Autonomous Exploration Development Environment是一个开源机器人自主导航开发平台,集成了环境感知、路径规划和仿真测试功能。其核心包含TARE/FAR/ASE三种上层规划器(分别针对未知环境探索、点对点导航和马尔科夫决策),配合本地运动基元避障和地形可穿越性分析模块。支持ROS系统下的快速部署,提供Gazebo/Rviz仿真工具,可模拟车库、隧道等复杂场景。生态中还有ISS自动驾驶平台等衍生项目,适用于无人机、自动驾驶等领域的算法开发与测试。(149字)

2025-10-12 17:12:22 1373

原创 MoveIt学习——使用 MoveIt 控制机械臂移动至特定位置

本文介绍了使用MoveIt控制Panda机械臂的程序结构和目标姿态设置方法。程序结构包括初始化、参数配置(允许重规划、设置容差和速度限制)和运动执行流程(绝对/相对位置移动和预设姿态调用)。重点解析了目标姿态设置,包括坐标系基础、绝对/相对位置设置、欧拉角与四元数转换,并提供了垂直向下、水平向前等典型姿态配置示例。注意事项强调需考虑工作空间限制、奇异性避免和碰撞检测,并推荐通过打印当前位姿进行调试。该控制方案具有安全设置(10%最大速度)、容错机制和多种运动方式的特点。

2025-10-10 10:56:41 461

原创 使用 Rhinoceros 3D 软件修改 .3dm 文件

本文介绍了修改Rhino 3D模型文件(.3dm)的具体方法。首先需要安装Rhinoceros 3D软件,它提供完整修改功能,而免费查看器仅支持查看。修改分为三个层面:基础编辑(移动、缩放、控制点调整)、建模工具(布尔运算、挤出、放样)和属性管理(图层、材质)。保存修改后,可通过Ctrl+S覆盖原文件。文章还推荐了使用历史记录功能和导入导出等高级技巧,并汇总了各类修改目标对应的操作方法。最后建议用户大胆尝试,充分利用软件的撤销功能。

2025-10-10 10:54:16 777

原创 随笔:CUDA和Miniconda3在ubuntu的关系和使用

CUDA和Miniconda3是两种完全不同类型的东西,没有可比性。一个是计算平台,一个是包管理器。安装了Miniconda3,不代表你拥有了CUDA。Miniconda3本身只是一个管理工具。对于深度学习等GPU计算任务,你不需要在系统层面单独安装庞大的CUDA Toolkit。应该利用Miniconda3/Conda的强大功能,在特定的环境中安装所需版本的。这是更简洁、更专业的管理方式。确保先安装好NVIDIA显卡驱动,这是使用GPU进行计算的基础。在Ubuntu上安装NVIDIA显卡驱动。

2025-10-09 10:23:55 962

原创 ROS2学习——`.3dm`文件转换为 Gazebo 仿真模型

Rhino 3DM文件转换Gazebo仿真模型的流程:1) 从Rhino导出为STL/DAE中间格式;2) 使用Blender优化网格;3) 创建Gazebo模型文件夹结构,包含config和SDF文件;4) 在Gazebo中测试调试。关键点包括:确保模型封闭、设置正确单位、简化碰撞网格、配置惯性参数。该过程需要多次调试,特别是物理属性的设置。

2025-09-26 11:19:44 707

原创 Open Navigation‘s Nav2 Complete Coverage技术文档翻译

摘要: Open Navigation的Nav2全覆盖软件包集成了Fields2Cover规划系统,支持开放田地及预标注行的路径规划。提供模块化任务服务器(opennav_coverage和opennav_row_coverage)、行为树节点及导航插件,支持GPS/笛卡尔坐标,并允许动态参数配置。通过ComputeCoveragePath和NavigateCompleteCoverage接口实现路径生成与导航,适用于农业等场景。需搭配Fields2Cover v1.2.1使用,由Open Navigati

2025-09-25 16:58:19 1209

原创 随笔——路径规划算法汇总

路径规划是机器人和自动驾驶领域的核心技术,主要解决在障碍环境中寻找最优路径的问题。文章系统介绍了四大类算法:1)全局路径规划(如A*、RRT*等搜索算法),适用于已知环境;2)局部路径规划(如DWA、人工势场法),用于动态避障;3)全覆盖路径规划(单元分解法、回溯算法),实现区域无遗漏遍历;4)自动驾驶专用算法(分层规划、曲线插值法)。算法选择需考虑环境已知度、实时性、机器人运动能力等因素,未来趋势包括混合算法、深度学习和多机协同。不同场景需灵活组合算法以获得最佳效果。

2025-09-25 16:55:12 1945

原创 ROS2学习——PCL Tools 详细介绍和常用功能

PCL工具集是处理点云数据的命令行工具套件,支持.pcd格式文件操作。主要包含pcl_viewer(可视化工具)、pcl_converter(格式转换)、pcl_convert_pcd_ascii_binary(二进制/ASCII转换)等核心工具。提供点云滤波、配准、分割等功能,支持批量处理脚本编写和管道操作组合。工具集适用于自动化处理流程,pcl_viewer支持交互式查看和多点云对比,可通过快捷键调整视角和显示效果。还包含常见问题解决方案和实用技巧,如内存优化、文件修复和批量重命名等。

2025-09-24 10:38:35 721

原创 ROS2学习——`octovis` 和八叉树地图工具的功能与使用方法

OctoMap是一个基于八叉树的开源C++库,用于构建概率化三维地图。其核心工具包括octomap_server(实时处理传感器数据生成地图)和octovis(可视化工具)。通过递归分割立方体空间,OctoMap能高效存储多分辨率三维环境信息,支持动态更新和概率占据表示。典型使用流程为:传感器数据→octomap_server生成.bt/.ot地图文件→octovis可视化查看。安装简便(Ubuntu可用apt获取),提供多种交互操作和参数调整功能,适用于机器人导航和环境建模等场景。

2025-09-24 10:38:08 1472

原创 关闭 conda 自动启动(自动激活 base 环境)及手动启动方法

摘要:关闭conda自动激活base环境有三种方法:1)永久禁用(推荐)使用conda config --set auto_activate_base false;2)手动退出当前会话conda deactivate;3)编辑shell配置文件(不推荐新手)。设置后仍可通过conda activate手动启动环境,推荐方法一最安全可靠。验证设置后,终端将不再自动激活base环境,实现按需使用conda环境。

2025-09-23 15:45:15 1012

原创 解决:fastlio使用rqt保存地图失败分析原因

FAST-LIO建图过程中出现PCD保存失败错误。主要问题是程序无法在指定路径/home/robot/d2lros2/fastlio_cs5_ws/src/FAST_LIO_ROS2/PCD/创建文件,报错pcl::IOException。解决方案包括:1)检查并创建目标目录;2)修改配置文件使用绝对路径;3)检查磁盘空间;4)临时禁用PCD保存功能。建议优先采用绝对路径方案,并确保目标目录有写权限。该问题通常由路径不存在或权限不足导致,验证目录可写性后即可解决。

2025-09-23 10:13:20 420

原创 ROS2学习笔记——Ubuntu 22.04查看点云.PCD文件

本文介绍了在Ubuntu 22.04上查看PCD点云文件的多种方法:1)使用PCL工具包中的pcl_viewer进行快速可视化;2)通过CloudCompare软件进行功能丰富的查看;3)利用MeshLab软件处理点云数据;4)通过Python脚本结合PCL或Open3D库进行编程查看。文章还提供了查看PCD文件基本信息的方法,并针对不同需求给出了推荐方案:轻量级查看推荐pcl_viewer,功能完整推荐CloudCompare,开发需求推荐使用Open3D+Python组合。每种方法都附有详细的安装和操作

2025-09-23 10:03:00 801

原创 Fast-LIO使用——mid360.yaml配置文件代码解析

mid360.yaml是用于Livox Mid-360激光雷达的ROS 2节点参数配置文件,主要包含SLAM系统参数设置。文件分为通用参数(如话题名称、时间同步)、预处理参数(如雷达类型、盲区过滤)、建图参数(如噪声协方差、外参估计)和发布参数(如路径/地图发布选项)。关键配置包括关闭特征提取、设置点云降采样、定义地图立方体边长1000米、启用外参估计和点云保存功能。该文件完整配置了从数据采集到建图发布的整个SLAM流程参数。

2025-09-08 10:52:08 726

原创 解决:使用rosdep安装依赖警告UserWarning: pkg_resources is deprecated as an API.

摘要:执行rosdep install命令时出现pkg_resources弃用警告,但所有依赖已成功安装。警告源于rosdep仍使用即将移除的pkg_resources模块。建议直接忽略该警告(方案一),或通过-W ignore隐藏;也可降级setuptools(方案二,不推荐);最佳方案是等待官方更新(方案三)。当前警告不影响功能,可继续开发工作。

2025-09-07 10:15:07 3700

原创 ROS2学习——使用Cartographer在ROS2 Humble和Gazebo11中进行三维SLAM建图

本文介绍了在ROS2 Humble和Gazebo11环境下使用Cartographer进行三维SLAM建图的完整流程。主要内容包括:1)系统环境搭建(ROS2、Gazebo11和Cartographer安装);2)三维SLAM配置(创建自定义配置文件和启动文件);3)Gazebo仿真环境运行与地图可视化;4)八叉树地图生成方法。通过点云数据处理和Octomap转换,可实现三维点云地图和八叉树地图的创建。文中提供了详细的代码示例和配置说明,适用于机器人三维环境建模应用场景。

2025-09-05 15:43:44 1900 6

原创 ROS2学习——使用Fast-LIO在ROS2 Humble和Gazebo 11中进行三维SLAM建图

本文介绍了在ROS2 Humble和Gazebo 11环境下使用Fast-LIO算法进行三维SLAM建图的完整流程。内容包括系统环境配置(ROS2 Humble、Gazebo 11安装)、Fast-LIO算法安装、仿真环境搭建与建图实现,以及点云地图和八叉树地图的生成与可视化方法。同时提供了故障排除建议和优化方向,适用于在仿真环境中实现高效的三维SLAM建图任务。

2025-09-05 15:36:14 1109

在Win11家庭版中启用Hyper-V脚本

在Win11家庭版中启用Hyper-V脚本,适用见https://blog.csdn.net/qq_73735007/article/details/139504235?fromshare=blogdetail&sharetype=blogdetail&sharerId=139504235&sharerefer=PC&sharesource=m0_55260921&sharefrom=from_link

2025-07-24

通信课程设计 (Labveiw连线消消乐)

《通信原理课程设计》是通信工程、电子与信息工程专业的必修课程。这门课程旨在通过实验设计与操作,培养学生发现问题、分析问题、解决问题的能力。课程内容通常包括通信系统的基本构成、常见通信技术(如ADC、PCM、ASK、FSK、PSK等)的基本原理及实现。它将理论与实践相结合,不仅培养了学生的实践能力和创新能力,还提升了他们的科学精神、职业素养以及团队协作与沟通能力,使学生能够深入理解行业发展,为未来的职业规划和发展奠定了坚实的基础,从而全面提升了学生的综合素质。 课程课设内容十分有趣,入门较简单,本设计仅供学习参考。

2024-07-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除