网游等级经验通用表,含怪物经验公式

本经验表,适用于大部分横版过关,换皮网游,卡牌等游戏。

1:100

2:250

3:400

4:600

5:850

6:1100

7:1450

8:1900

9:2500

10:3300

11:4500

12:6000

13:8000

14:10500

15:13000

16:16000

17:20000

18:25000 

19:30000

20:36000

21:43000 

22:54000

23:65000

24:76000

25:87000

26:100000

27:120000

28:150000

29:190000

30:240000

31:300000

32:370000

33:450000

34:540000

35:650000

36:760000

37:880000

39:990000

40:110w

41:125w

42:133w

43:150w

44:175w

45:205w

46:240w

47:280w

48:330w

49:380w

50:450w

51:520w

52:600w

53:690w

54:800w

55:920w

56:1050w

57:1200w

58:1400w

59:1700w

60:2100w

61:2500w

62:3000w

63:3600w

64:4500w

65:5400w

66:6300w

67:7200w

68:8100w

69:9400w

70:10500w

71:12000w

72:14000w

73:16500w

74:20000w

75:25000w

76:32000w

77:39500w

78:50000w

79:60000w

80:72000w

81:86000w

82:98000w

83:11.1e

84:12.5e

85:14e

86:16.2e

87:18.9e

88:20e

89:23e

90:26e

91:30e

92:36e

93:42e

94:49e

95:58e

96:69e

97:80e

98:90e

99:101e

100:115e

101:130e

102:150e

103:175e

104:205e

105:230e

106:255e

107:285e

108:310e

109:345e

110:380e

111:420e

112:460e

113:505e

114:550e

115:595e

116:645e

117:695e

118:750e

119:810e

120:860e

(大部分游戏等级上限为120级。)

怪物经验公式

1-3:对应等级*0.1

4-7:对应等级*0.075

8-13:对应等级*0.04

14-21:对应等级*0.03

22-40:对应等级*0.02

41-55:对应等级*0.015

55-70:对应等级*0.01

70-90:对应等级*0.0035

90-100:对应等级*0.0015

100-110:对应等级*0.0005

110-120:对应等级*0.00015

注前期吊住玩家胃口,难度稍低,后期增加难度。

 

 

 

 

数据集介绍:多类道路车辆目标检测数据集 一、基础信息 数据集名称:多类道路车辆目标检测数据集 图片数量: - 训练集:7,325张图片 - 验证集:355张图片 - 测试集:184张图片 总计:7,864张道路场景图片 分类类别: - Bus(公交车):城市道路与高速场景中的大型公共交通工具 - Cars(小型汽车):涵盖轿车、SUV等常见乘用车型 - Motorbike(摩托车):两轮机动车辆,不同骑行姿态样本 - Truck(卡车):包中型货运车辆与重型运输卡车 标注格式: YOLO格式标注,包归一化坐标的边界框与类别标签,适配主流目标检测框架。 数据特性: 覆盖多种光照条件与道路场景,包车辆密集分布与复杂背景样本。 二、适用场景 自动驾驶感知系统开发: 用于训练车辆识别模块,提升自动驾驶系统对道路参与者的实时检测与分类能力。 交通流量监控分析: 支持构建智能交通管理系统,实现道路车辆类型统计与密度分析。 智慧城市应用: 集成至城市级交通管理平台,优化信号灯控制与道路资源分配。 学术研究领域: 为计算机视觉算法研究提供标准化评测基准,支持多目标检测模型优化。 三、数据集优势 高场景覆盖率: 包城市道路、高速公路等多种驾驶环境,覆盖车辆静止、行驶、遮挡等现实场景。 精细化标注体系: 采用YOLO标准格式标注,每张图片均经过双重质检,确保边界框与类别标签的精准对应。 类别平衡设计: 四类车辆样本量经科学配比,避免模型训练时的类别偏向问题。 工程适配性强: 可直接应用于YOLO系列模型训练,支持快速迁移至车载计算平台部署。 现实应用价值: 专注自动驾驶核心检测需求,为车辆感知模块开发提供高质量数据支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值