自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 点云网络基石:速看pointnet/pointnet++

输出大小与MSG相同。pointnet++在此基础上使用了分层结构,分层处理度量空间(欧式距离空间)的一组采样点,首先通过基础的空间距离度量方式将点集划分为重叠的局部区域,随后从小邻域中提取局部特征,这些局部特征随后被组合进一个更大的单元,并再次处理以产生更高层次的特征,持续这个过程直到得到整个点集的全局特征。输出一个大小为N'*K*(d+C)的点集组,每一组N'代表一个局部区域,K是质心点的邻域点数,K在不同的组中是不同的,但是pointnet层能够将不同数量的点转换为固定长度的局部区域特征向量。

2025-06-06 22:50:37 520

原创 自监督强化学习重要技巧:Loss is its own Reward:Self-Supervision for Reinforcement Learning(ICLR 2017)

这篇论文是OpenAI在2017年发布在ICLR上的一种自监督强化学习实现方案,时至今日,任有不少强化学习方案依然沿用该技巧。其简单性,有效性,直观性令人叹为观止,由于现在大部分博客介绍的SSL-RL方法集中为CPC,RND之流,这篇好文确鲜有人解析,因此今日再此一叙。从某种角度上讲,自监督强化学习本质上完成了一个奖励自适应的工作,减少了学习过程中人为参与的部分,增加了自动学习环境特征的能力。一、简要介绍:在传统的强化学习中,我们解决的本质上是两个问题:一是对目标策略的优化问题,二是对特征表征学习的问题。所

2025-06-04 16:08:25 1022

原创 AE 与 VAE 深度解析:

因此,我们使用重参数化技巧(参考SAC中对重参数化的说明,简单来说就是因为编码器解码器是同时训练的,但是采样的向量既不是mu也不是sigma的函数,但又由两者确定,即为了可微使用的一种技巧)来模拟采样过程,这使得错误能够通过网络传播。可能会感觉有些奇怪,对于AE来说,深层网络的特征通道反而更少了,这是由其使用场景决定的,我们需要使用尽可能少的通道表示高维输入的潜在特征。可能会感觉有些奇怪,对于AE来说,深层网络的特征通道反而更少了,这是由其使用场景决定的,我们需要使用尽可能少的通道表示高维输入的潜在特征。

2025-06-03 10:50:02 884

原创 Soft Actor-Critic(SAC)深度解析

这是因为SAC策略网络的输出高斯分布的均值和方差,直接从其输出采样动作会使策略更新的梯度计算不可导,这是因为我们采样的动作at与策略网络中的参数phi相关,但是采样的返回是一个具体值,在at和网络参数phi之间没有明确的可微映射,这就导致梯度是不可计算的,为了解决这个问题我们使用了重参数化的技巧。对于Q网络的更新,这里关注到我们使用了两个不同的Q网络,目的是解决对Q值的过度估计问题,但这里处理过度估计的方法和Double DQN不同,这里我们取Q值估计中的较小值,直接砍掉可能出现过度估计的Q值噪声估计。

2025-05-28 22:42:04 773

原创 GYM 0.21.0安装踩坑(修改源码)

注意最后一行的"other": ["lz4>=3.1.0", "opencv-python>=3.0"],这里源代码是"opencv-python>=3.",问题就出现在这个0上,这么一看是不是显得特别XX(当时是真的想骂人,浪费时间),修改完成后在当前的虚拟环境中(一定要激活你需要安装的那个虚拟环境)使用。但是现在大部分项目依然使用gym的接口,gym的接口没有向后兼容性。随后,回退pip,setuptools,wheel的版本,以防万一。直接安装gym是不会报错的,但是默认安装0.26.2。

2025-05-17 22:31:02 433

原创 无法正常启动joint_state_publisher_gui/joint_state_publisher的解决方案

但是没有出现界面,使用rosnode list发现只有robot_state_publisher被启动,使用rostopic info监听信息发现robot_state_publisher订阅的joint话题的发布者不存在,打开rviz发现所有非fixed关节均无法正常显示tf变换信息,robotmodel菜单下显示state_error,无法获得tf变换信息。问题产生原因:本人能力有限尚未分析出该问题的原因,如果有人有相关线索欢迎分享。环境说明:Ubuntu20.04+ros noetic。

2025-03-09 16:59:23 321 1

原创 优先队列式分枝限界算法求解01背包问题

究其原因,是大部分人都没有理解一点,最大值优化的分枝限界需要一个上界估计的优先级函数用于优先队列排序和剪枝(与动态上界比较),但同时也需要一个最小收益估计函数用于更新动态上界。对于最小值优化问题同理。

2024-11-08 09:07:01 424

原创 使用selenium突破QQ小说动态cookie,爬取并清洗大批量中文文本(Linux环境)

动态cookie是比较常见的网站反爬手段,每一次访问用户cookie都会实时变化,QQ小说就是典型的例子。目前csdn上有很多总结动态cookie的突破方案的,比如通过js逆向推导生成过程等等,但既然又selenium这么方便的手段何必要吃逆向的苦呢,我还看到一些博主使用selenium只是为了获得当前的cookie再用requests请求,然后再展示一下我的方案,以QQ小说的免费小说为例(别问我说为什么不爬付费的)。反正那几个博主的代码我都看过,没有一个是真的能爬出东西的。这是完全错误的方案!

2024-09-28 11:08:16 1210

原创 简析一下python中的深浅拷贝和赋值

python中的浅拷贝和深拷贝虽然与C++中的有相同的含义,但本质上不同,对于不存在复合和嵌套(简单来说就两种,序列有个元素是另一个序列(嵌套序列)和类嵌套另一个类对象作属性)关系的对象浅拷贝和深拷贝的功能完全一样,即创建一个新对象,不管是不是可变不可变类型,都具有一个独立的id。但浅拷贝则不是,浅拷贝只会给那些单层的对象分配独立内存,而对于嵌套的子序列和子属性则是对原对象的"引用"(共用一个id,就相当于别名)深拷贝会完全独立的创建一个新的对象,即嵌套的子序列和子属性都有自己独立的id。

2024-09-21 21:39:37 330

原创 Win11的Bitlocker位置

但有的设备可能就不在,比如说我的这台拯救者Y9000P,这就很奇怪了,不卖关子了打开设置->系统->存储->磁盘和卷->选择磁盘,就能看到啦。分享一下win11的关闭和打开bitlocker的位置:相信很多人肯定会在搜索框直接查找应用。但很显然是找不到的,那会不会在设置->隐私和安全性里呢(有的可能确实在)

2024-09-07 15:36:59 3239

原创 ROS服务通信作业(IDE为vscode,系统为Ubuntu18.04,通信内容为随机数排序)

一个初学ros的人的课程小作业

2022-04-17 21:56:47 2053 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除