关于约数的问题

本文探讨了约数问题,包括约数之和的计算方法和反素数的概念,证明了最大反素数的性质。接着介绍了最大公约数的欧几里得算法,以及通过数学算法优化求解。同时讲解了整数分块(除法分块)的原理及其应用。最后,深入研究了欧拉函数,阐述了试除法和筛法求欧拉函数的策略,并提供了相关例题解析。
摘要由CSDN通过智能技术生成

一、约数

前置知识
一个数的约数之和:设该数为a,将a分解质因数写为:
在这里插入图片描述
则a的约数之和为:
在这里插入图片描述
例题1.AcWing 97.约数之和
由前置知识,很容易想到对于任意一组多项式pk,都是一组等比数列,可以利用等比数列求和公式快速求解。时间复杂度为O(k*log aB)(其中a,k的含义与上面的公式相同)

#include<iostream>
using namespace std;
typedef long long ll;
const ll N=5e7+5,mod=9901;
ll c[N],p[N],m[N],cnt;
ll qmi(ll a,ll b,ll p){
   
    long long ans=1;
    a=a%mod;
    while(b){
   
        if(b&1) ans=ans*a%p;
        a=a*a%p;
        b>>=1;
    }
    return ans%p;
}
int main(){
   
    ll a,b;
    cin>>a>>b;
    if(!a){
   
        cout<<0<<endl;
        return 0;
    }
    if(!b){
   
        cout<<1<<endl;
        return 0;
    }
    for(ll i=2;i*i<=a;i++){
   
        if(a%i==0) c[++cnt]=i;
        while(a%i==0){
   
            p[cnt]++;
            a/=i;
        }
    }
    if(a>1){
   
        c[++cnt]=a;
        p[cnt]=1;
    }
    for(int i=1;i<=cnt;i++){
   
        m[i]=qmi(c[i],b*p[i]+1,mod);
    }
    ll ans=1;
    for(int i=1;i<=cnt;i++){
   
        ll tot;
        if(m[i]==1) tot=(b+1)%mod*p[i]%mod;//这里要注意等比数列求和应用的条件
        else tot=(m[i]-1+mod)%mod*qmi(c[i]-1,mod-2,mod)%mod;
        ans=ans*tot%mod;
    }
    cout<<(ans+mod)%mod<<endl;
}

此外,还有一种时间复杂度相同的方法:分治递归法。
此法将等比数列分成两段并提出公因式,并由递归函数求出其公因式。(方法类似于归并排序)
例题2.AcWing 198.反素数
基本思路
1.根据题意,约数越多的数,它是反素数的概率就越大。所以,不妨设法找出约数最多的数的集合
2.我们猜想,约数最多的数中最小的那个数就是最大的反素数(猜想1,关键所在)
3.枚举每个数的约数个数的时间复杂度为O( N N N\sqrt{N} NN ),会超时。不妨观察一下数据范围,根据算数基本定理, 2 × 3 × 5 × 7 × 11 × 13 × 17 × 19 × 23 × 29 × 31 > 2 × 1 0 9 2\times 3 \times 5 \times 7 \times 11 \times 13 \times 17 \times 19 \times 23 \times 29 \times 31>2\times 10^{9} 2×3×5×7×11×13×17×

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值