代码随想录第三十九天 DP Part2 62.不同路径 63. 不同路径 II

文章介绍了使用动态规划方法解决两类路径问题:一类是简单的到达网格点问题,另一类是在存在障碍物的情况下寻找唯一路径。通过递推公式更新dp数组来计算路径数量。
摘要由CSDN通过智能技术生成

动态规划 Part2

62.不同路径  

题目链接:力扣题目链接

思路:

  1. dp[i][j]表示到达第[i][j]点的方式
  2. 第一排和第一列都是 1 种
  3. dp[i][j] = dp[i][j - 1] + dp[i - 1][j]

实现代码:

var uniquePaths = function(m, n) {
    let dp = new Array(m).fill(0).map(item => new Array(n).fill(0))
    for(let k = 0; k < m; k = k + 1) {
        dp[k][0] = 1
    }

    for(let l = 0; l < n ; l = l + 1) {
        dp[0][l] = 1
    }

    for(let i = 1;i < m; i= i + 1) {
        for(let j = 1; j <n; j = j + 1) {
            dp[i][j] = dp[i][j - 1] + dp[i - 1][j]
        }
    }


    return dp[m - 1][n - 1]
};

63. 不同路径 II

题目链接: 力扣题目链接

思路:这里遇到障碍物也就是 obstacles[i][j]=== 1的情况,就得跳过

实现代码:

var uniquePathsWithObstacles = function (obstacleGrid) {
   let m = obstacleGrid.length
    let n = obstacleGrid[0].length

    let dp = new Array(m).fill(0).map(() => new Array(n).fill(0))

    for (let k = 0; k < m; k = k + 1) {
        console.log(obstacleGrid[k][0])
        if (obstacleGrid[k][0] === 1) break
        dp[k][0] = 1
    }


    for (let l = 0; l < n; l = l + 1) {
        if (obstacleGrid[0][l] === 1) break
        dp[0][l] = 1
    }

    console.log(dp)

    for(let i = 1; i < m; i = i + 1) {
        for(let j = 1; j < n; j = j +1) {
            if(obstacleGrid[i][j] !== 1) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
            } 
        }
    }
    return dp[m-1][n-1]
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值