
SoftwareTest
文章平均质量分 78
软件测试是使用人工或自动的手段来运行或测定某个软件系统的过程,其目的在于检验它是否满足规定的需求或弄清预期结果与实际结果之间的差别。
流动熵
量化全球资金熵增轨迹,在无序中寻找可重复的有序片段
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Pytest 插件推荐
这个示例展示了如何:编写简单的测试用例。使用模拟外部依赖。使用pytest-cov生成测试覆盖率报告。原创 2025-04-11 21:01:08 · 871 阅读 · 0 评论 -
Python多线程和多进程
每家店有自己的厨房和厨师(独立内存和资源),互不干扰,但成本高(占用更多电脑资源)。,他们共享一个厨房(内存),一起做菜。:比如下载文件、爬网页、处理用户输入(线程在等待时可以切换去干别的)。你用迅雷下载电影,迅雷同时开多个线程下载不同片段,最后拼成完整文件。:在多核CPU上,不同进程可以同时运行(不受GIL限制):适合“等人”(I/O等待)的活,但小心打架(线程安全):在 Python 中,多线程因为 GIL 锁,。:适合“死算”(CPU计算)的活,但成本高。:如果是计算任务,直接选多进程(。原创 2025-04-10 21:46:35 · 396 阅读 · 0 评论 -
鸿蒙性能测试代码
添加多层异常捕获(设备状态、步骤执行、资源清理)统一日志格式(包含时间戳、级别、模块名)定义性能阈值(CPU、内存、帧率)将测试流程拆分为独立方法(如。失败时自动截图并标记测试失败。生成包含设备信息的测试报告。关键操作增加上下文信息记录。使用类型注解增强代码可读性。使用配置常量替代硬编码。实时捕获并验证性能指标。自动安装/卸载测试应用。引入性能阈值验证机制。测试步骤支持动态扩展。原创 2025-04-08 21:37:22 · 428 阅读 · 0 评论 -
如何编写优质代码
编写优质代码是一个持续的过程,需要不断学习和实践。原创 2025-02-26 22:06:35 · 674 阅读 · 0 评论 -
Python 开发常用的技术点和框架
高性能、自动生成文档(基于 OpenAPI)、类型注解支持。:PyCharm、VS Code(支持 Python 插件)。:简单高效的数据挖掘和数据分析工具,支持多种机器学习算法。:支持大规模机器学习、深度学习,支持 GPU 加速。:功能强大、内置 ORM、支持快速开发、安全性高。:科学计算库,包含数值积分、优化、信号处理等功能。:位置参数、关键字参数、默认参数、可变参数(:自动化测试工具,支持浏览器自动化操作。:异步网络请求、异步 Web 服务。:类属性属于类,实例属性属于对象。:轻量级、灵活、易于。原创 2025-02-26 22:02:16 · 759 阅读 · 0 评论 -
pytest自动化项目
框架的接口自动化项目的优秀解决方案,包括包结构目录和关键代码示例。的配置文件,用于定义 fixture 和钩子函数。封装 HTTP 请求工具。查看个人信息接口测试用例。修改密码接口测试用例。原创 2025-02-12 22:43:37 · 303 阅读 · 0 评论 -
pytest常用的函数
pytest是一个非常强大的 Python 测试框架,它提供了许多便捷的函数和功能,用于编写、运行和管理测试用例。以下是一些pytest。原创 2025-02-12 22:34:00 · 393 阅读 · 0 评论 -
pytest登录接口
包含参数化数据的 YAML 文件。原创 2024-02-28 10:27:17 · 302 阅读 · 0 评论 -
大数据测试类型,学习步骤
1.什么是大数据大数据是一个大的数据集合,通过传统的计算技术无法进行处理。这些数据集的测试需要使用各种工具、技术和框架进行处理。大数据涉及数据创建、存储、检索、分析,而且它在数量、多样性、速度方法都很出色,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。2.大数据测试类型测试大数据应用程序更多的是验证其数据处理,而不是测试软件产品的个别功能。当涉及到大数据测试时,性能和功能测试是关键。处理可以是三种类型:批量、实时、交互在测试应..原创 2022-05-21 23:27:18 · 860 阅读 · 0 评论 -
大数据测试
什么是大数据测试 大数据测试通常是指对采用大数据技术的系统或应用的测试。大数据测试可以分为两个维度,一个维度是数据测试,另一个维度是大数据系统测试和大数据应用产品测试。数据测试: 主要关注数据的完整性、准确性和一致性等。大数据系统测试和大数据应用产品测试: 这里的大数据系统一般是指使用hadoop生态组件搭建的或者自主研发的大数据系统。自主研发的大数据系统主要包括数据的存储、计算和分析等应用。 大数据系统测试主要包括功能、基准、安全和可靠性测试。功能测试...原创 2022-05-19 22:51:17 · 11488 阅读 · 0 评论 -
怎么进行大数据测试?我们需要具备怎样的测试能力?
前言:现在大数据这么火,那么作为测试人员,我们应该怎么进行大数据测试?需要具备怎样的测试能力?一、大数据测试实现被分成三个步骤(1):数据阶段验证大数据测试的第一步,也称作pre-hadoop阶段该过程包括如下验证:1、来自各方面的数据资源应该被验证,来确保正确的数据被加载进系统2、将源数据与推送到Hadoop系统中的数据进行比较,以确保它们匹配3、验证正确的数据被提取并被加载到HDFS正确的位置该阶段可以使用工具Talend或Datameer,进行数据阶段验证。(2):"Ma.转载 2022-04-07 22:12:54 · 4284 阅读 · 0 评论 -
自动化测试
1. 测试理论1.1 软件测试目的及原则软件测试目的 1. 用最少的人力、物力、财力,找到软件中的问题并修复,从而降低商业风险软件测试原则 1. 只能证明软件存在问题,不能证明不存在问题 2. 应该分类别测试,不能穷举测试 3. 测试工作要尽早的介入,降低修复成本 4. 缺陷存在集群现象,二八原则:20%的模块中存在80%的缺陷 5. 测试依赖环境(系统、浏览器) 6. 杀虫剂现象7. 不存在缺陷谬论1.2 软件测试分类1原创 2021-08-18 11:47:50 · 822 阅读 · 0 评论 -
软件测试技术知识了解.
一、常见的Linux知识、命令与使用1、 各类Linux系统版本2、 常见的Linux命令与使用,如3、管道、重定向、环境变量4、 Vim编辑器与Shell命令脚本5、用户身份与文件权限6、RAID、IPtables等知识了解7、使用Samba 或NFS文件共享8、SSH 连接管理远程9、Linux文件上传下载、FTP命令使用10、常用监控命令TOP、IOSTAT、VMSTAT、NMON等11、使用工具对Linux磁盘性能测试任务1:开启Linux共享,将Windows的文件定时复制原创 2021-03-12 08:45:56 · 191 阅读 · 0 评论 -
Windows UI 自动化测试技术
到目前为止,微软发布的Windows GUI自动化测试技术总共有四种:Windows API、MSAA (Microsoft Active Accessibility)、UIAutomation、Windows Automation API 3.0. 微软针对自己产品的自动化测试中,根据不同产品的特性和可测性,上述四种技术均有用到。而对于Office系列的自动化测试,UIAutomation技术用得尤其多。 Windows API识别窗口:需要通过FindWindow和EnumWindo原创 2021-03-12 08:36:22 · 897 阅读 · 0 评论