原来还有1维卷积:Conv 1D

一维卷积神经网络(1D CNN)通常用于时序数据,如语音或文本。以下是一个简单的1D卷积神经网络的示例代码,使用Keras框架:

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv1D, MaxPooling1D, Flatten, Dense
 
# 定义模型
model = Sequential()
 
# 添加1D卷积层
model.add(Conv1D(filters=32, kernel_size=3, activation='relu', input_shape=(100, 1)))
 
# 添加最大池化层
model.add(MaxPooling1D(pool_size=2))
 
# 添加另一个卷积层和池化层
model.add(Conv1D(filters=64, kernel_size=3, activation='relu'))
model.add(MaxPooling1D(pool_size=2))
 
# 展开池化输出
model.add(Flatten())
 
# 添加全连接层
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))  # 假设有10个类别
 
# 编译模型
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
 
# 模型的使用方法(示例)
# x_train, y_train: 输入数据和目标标签
# model.fit(x_train, y_train, epochs=10)

这个例子中,我们定义了一个Sequential模型,添加了两个卷积层和两个最大池化层,以及两个全连接层。在编译模型时,我们指定了优化器、损失函数和评价指标。这个模型可以用于时序数据的分类任务。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值