二叉树的基本操作(数据结构)

二叉树的相关操作
用递归的方法实现二叉树的操作:
(1)以二叉链表表示二叉树,建立一棵二叉树(算法 5.3);
(2)输出二叉树的中序遍历结果(算法 5.1);
(3)输出二叉树的前序遍历结果(见讲稿);
(4)输出二叉树的后序遍历结果(见讲稿);
(5)计算二叉树的深度(算法 5.5);
(6)统计二叉树的结点个数(算法 5.6);
(7)统计二叉树的叶结点个数;

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#define MAXSIZE 100
typedef  char TElemType;
#define OVERFLOW -1
using namespace std;
typedef struct BiNode{
   TElemType   data;
   struct  BiNode   *lchild,*rchild;     //左右孩子指针
}BiNode,*BiTree; 

BiTree CreatBiTree();  //创建二叉树的函数
void PreOrderTraverse(BiTree T);
void InOrderTraverse(BiTree T);
void PostOrderTraverse(BiTree T);
int LeafCount(BiTree T);
int NodeCount(BiTree T);
int Depth(BiTree T);
void main()
{ 
  BiTree T=NULL;
  int a;
  int b; //ch1用来控制子系统界面是否一直出现,ch2用来选择具体的操作
  
  while(b) 
  { printf("\n");
    printf("\n\t\t              二叉树基本操作");
	printf("\n\t\t*******************************************");
	printf("\n\t\t*   1------建二叉树                       *");
	printf("\n\t\t*   2------中序遍历                       *");
	printf("\n\t\t*   3------前序遍历                       *");
	printf("\n\t\t*   4------后序遍历                       *");
	printf("\n\t\t*   5------二叉树深度                     *");
	printf("\n\t\t*   6------二叉树结点个数                 *");
	printf("\n\t\t*   7------二叉树叶结点个数               *");
	printf("\n\t\t*   0------返    回                       *");
    printf("\n\t\t*******************************************");
    printf("\n\t\t  请选择菜单号(0--7):");
	scanf("%d",&a); 
	getchar();
	printf("\n");
	switch(a)  
	{  case 1:
	      printf("\n\t\t 请按先序序列输入二叉树的结点,输入结点后按回车键\n");
		  printf("\n\t\t '#'表示后继结点为空。\n");
		  printf("\n\t\t 请输入根结点:");
		  T=CreatBiTree();
		  printf("\n\t\t 二叉树成功建立!\n");     
		  break;
       
       case 2:
		  printf("\n\t\t 二叉树的中序遍历序列为:  ");
		  InOrderTraverse(T);
		  break;
	   case 3:
		  printf("\n\t\t 二叉树的先序遍历序列为:  ");
		  PreOrderTraverse(T);
		  break;
       case 4:
		  printf("\n\t\t 二叉树的后序遍历序列为:  ");
		  PostOrderTraverse(T);
		  break;
       case 5:
		  printf("\n\t\t 二叉树的深度是:%d\n",Depth(T));
		  break;
       case 6:
		  printf("\n\t\t 二叉树总共有 %d 个结点。\n",NodeCount(T));
		  break;
	   case 7:
		  printf("\n\t\t 二叉树有 %d 个叶子结点。\n",LeafCount(T));
		  break;
      
       case 0:
		  b=0;
          break;
	   default:
          printf("输入数据错误!");
    }

  }
}
BiTree CreatBiTree()   //建二叉树
{ 
  BiTree T; // 定义一个二叉树指针变量
  char x;
  scanf("%c",&x); //x用来存放输入的字符数据
  getchar();
  if(x=='#')
	  T=NULL;  
  else
  { 
	T=(BiNode *)malloc(sizeof(BiNode));  //申请一个二叉树结点的空间
     if(!T){ printf("空间分配失败!\n"); exit(OVERFLOW);}
     T->data=x;   //输入的数据赋给结点的数据域,生成根结点
   	printf("\n\t\t 请输入 %c 结点的左子结点:",T->data);
	T->lchild=CreatBiTree();  //递归创建左子树
	printf("\n\t\t 请输入 %c 结点的右子结点:",T->data);
	T->rchild=CreatBiTree();//递归创建右子树

  }
  return T;
}

void PreOrderTraverse(BiTree T)    //先序遍历
{ 
  if(T)
  { printf("%3c",T->data);
    PreOrderTraverse(T->lchild);
	PreOrderTraverse(T->rchild);
  }
}

void InOrderTraverse(BiTree T)     //中序遍历
{ 
  if(T)
  { InOrderTraverse(T->lchild );
    printf("%3c",T->data);
    InOrderTraverse(T->rchild);
  }
}


void PostOrderTraverse(BiTree T)  //后序遍历
{ 
  if(T)
  { PostOrderTraverse(T->lchild );
   PostOrderTraverse(T->rchild);
	printf("%3c",T->data);
  }
}


int LeafCount(BiTree T)
{   //求叶子数
 	if(T==NULL) 	//如果是空树返回0
		return 0;
	if (T->lchild == NULL && T->rchild == NULL)
		return 1;   //如果是叶子结点返回1
	else return LeafCount(T->lchild) + LeafCount(T->rchild);
}

int NodeCount(BiTree T){   //求结点数
  if(T == NULL ) return 0;  //空树结点个数为0 				    
  else return NodeCount(T->lchild)+NodeCount(T->rchild)+1;//否则结点个数为左子树的结点个数+右子树的结点个数 
} 

int Depth(BiTree T) 计算二叉树T的深度
{
  int m,n;
  if(T==NULL)  
	 return 0;  //如果是空树,深度为0,递归结束
  else
  {
	
      m=Depth(T->lchild);//递归计算左子树的深度记为m

	n =Depth(T->rchild);//递归计算右子树的深度记为n
	if(m>n)
	   return m+1; //二叉树的深度为m与n较大者加1
	else
	   return n+1;
  }
}





`

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

加油吧!~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值