Monocarp is playing yet another computer game. In this game, his character has to kill a dragon. The battle with the dragon lasts 100500 seconds, during which Monocarp attacks the dragon with a poisoned dagger. The i-th attack is performed at the beginning of the ai-th second from the battle start. The dagger itself does not deal damage, but it applies a poison effect on the dragon, which deals 1 damage during each of the next kk seconds (starting with the same second when the dragon was stabbed by the dagger). However, if the dragon has already been poisoned, then the dagger updates the poison effect (i.e. cancels the current poison effect and applies a new one).
For example, suppose k=4, and Monocarp stabs the dragon during the seconds 2, 4 and 10. Then the poison effect is applied at the start of the 2-nd second and deals 1 damage during the 2-nd and 3-rd seconds; then, at the beginning of the 4-th second, the poison effect is reapplied, so it deals exactly 1 damage during the seconds 4, 5, 6 and 7; then, during the 10-th second, the poison effect is applied again, and it deals 11 damage during the seconds 10, 11, 12 and 13. In total, the dragon receives 10 damage.
Monocarp knows that the dragon has h hit points, and if he deals at least h damage to the dragon during the battle — he slays the dragon. Monocarp has not decided on the strength of the poison he will use during the battle, so he wants to find the minimum possible value of k (the number of seconds the poison effect lasts) that is enough to deal at least hh damage to the dragon.
Input
The first line contains a single integer t (1≤t≤1000) — the number of test cases.
The first line of the test case contains two integers n and h (1≤n≤100;1≤h≤1018) — the number of Monocarp's attacks and the amount of damage that needs to be dealt.
The second line contains nn integers a1, a2, ..., an (1≤ai≤109;ai<ai+1), where aiai is the second when the i-th attack is performed.
Output
For each test case, print a single integer — the minimum value of the parameter k, such that Monocarp will cause at least h damage to the dragon.
Example
input
Copy
4 2 5 1 5 3 10 2 4 10 5 3 1 2 4 5 7 4 1000 3 25 64 1337
output
Copy
3 4 1 470
Note
In the first example, for k=3, damage is dealt in seconds [1,2,3,5,6,7].
In the second example, for k=4, damage is dealt in seconds [2,3,4,5,6,7,10,11,12,13].
In the third example, for k=1, damage is dealt in seconds [1,2,4,5,7].
题意:有一条龙,血量为k,有n次机会捅龙,下面给出每次的时间,捅一次会每秒造成1点伤害,问没次的最小持续时间是多少可以捅死龙
思路:我们先算出每次的时间差,然后求出最少的持续时间,如果时间大于最小的时间差,就舍弃,直至最后一次,如果小于就是答案
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll arr[105];
ll b[105];
int main(){
ios::sync_with_stdio(false);
int t;
cin >> t;
ll n;
ll h;
while(t--){
cin >> n >> h;
for(int i = 0; i < n; i++){
cin >> arr[i];
}
ll m = h / n;
if(h % n != 0){
m++;
}
bool flag = 0;
for(int i = 0; i < n - 1; i++){
b[i] = arr[i + 1] - arr[i];
if(b[i] < m){
flag = 1;
}
}
if(flag == 0){
cout << m << "\n";
continue;
}
sort(b, b + n - 1);
ll sum = 0;
for(ll i = 0; i < n - 1; i++){
sum += b[i];
m = (h - sum) / (n - 1 - i);
if((h - sum) % (n - i - 1) != 0){
m++;
}
if(i + 1 == n - 1){
if(m < b[i]){
m = b[i];
}
cout << m << endl;
flag = 0;
break;
}
if(i + 1 < n - 1 && m < b[i + 1]){
if(m < b[i]){
m = b[i];
}
cout << m << endl;
flag = 0;
break;
}
}
if(flag == 1){
cout << h - sum << endl;
}
}
return 0;
}