周萌 07
1.Spark简介
(1)Spark最初由美国加州大学伯克利分校(UC Berkeley)的AMP实验室于2009年开发,是基于内存计算的大数据并行计算框架,可用于构建大型的、低延迟的数据分析应用程序
(2) 2013年Spark加入Apache孵化器项目后发展迅猛,如今已成为Apache软件基金会最重要的三大分布式计算系统开源项目之一。(Hadoop、Spark、Storm)
(3) Spark在2014年打破了Hadoop保持的基准排序纪录
Spark/206个节点/23分钟/100TB数据
Hadoop/2000个节点/72分钟/100TB数据
Spark用十分之一的计算资源,获得了比Hadoop快3倍的速度。
2.Spark具有如下几个主要特点:
(1)运行速度快:使用DAG执行引擎以支持循环数据流与内存计算
(2)容易使用:支持使用Scala、Java、Python和R语言进行编程,可以通过Spark Shell进行交互式编程
(3)通用性:Spark提供了完整而强大的技术栈,包括SQL查询、流式计算、机器学习和图算法组件
(4)运行模式多样:可运行于独立的集群模式中,可运行于Hadoop中,也可运行于Amazon EC2等云环境中,并且可以访问HDFS、Cassandra、HBase、Hive等多种数据源 。
3.相比于Hadoop MapReduce,Spark主要具有如下优点:
(1)Spark的计算模式也属于MapReduce,但不局限于Map和Reduce操作,还提供了多种数据集操作类型,编程模型比HadoopMapReduce更灵活。
(2)Spark提供了内存计算,可将中间结果放到内存中,对于迭代运算效率更高。
(3)Spark基于DAG的任务调度执行机制,要优于Hadoop MapReduce的迭代执行机制 。
第一篇
最新推荐文章于 2021-06-18 20:35:21 发布