- 博客(43)
- 收藏
- 关注
原创 下载hugging face上的数据集
输入这个命令即可下载:huggingface-cli download --repo-type dataset --token 你的token uoft-复制的数据集名 --local-dir 存放位置 --resume-download。当搜索数据集之后,浏览器给出的回答中包含hugging face,如果想使用hugging face上的数据集,按照下面的步骤即可成功下载(我使用的是Linux)然后找到数据集的名字:(这里我随便找了一个)直接点旁边的复制符号。
2025-02-03 17:19:57
2851
原创 纯小白一步一步自己安装总结的经验:Win下如何成功安装Cuda
下载完成后解压,将cudnn中的文件夹复制到C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.0。下一步后,取消CUDA里面的Visual Studio Intergration,否则下一步安装会失败(安装失败总结出来的经验)验证cudnn是否安装成功:在cuda的按装目录中找到\extras\demo_suite输入cmd。在电脑下方搜索栏中输入cmd调出命令行,输入nvidia-smi查看本电脑所支持的cuda版本。
2025-01-13 18:00:53
308
原创 在conda虚拟环境中安装cv2(试错多次总结)
首先保证你创建好了虚拟环境,并在anaconda命令窗口激活虚拟环境。然后测试cv2是否可以使用,输入python。运行python命令出现cv2的版本号即可。
2024-09-15 10:32:37
2098
原创 Datawhale X 李宏毅苹果书 AI夏令营(深度学习进阶)task3
感受野+参数共享=卷积层,用到卷积层的网络叫卷积神经网络。卷积神经网络的偏差比较大。但模型偏差大不一定是坏事,因为当模型偏差大,模型的灵活性较低时,比较不容易过拟合。全连接层可以做各式各样的事情,它可以有各式各样的变化,但它可能没有办法在任何特定的任务上做好。而卷积层是专门为图像设计的,感受野、参数共享都是为图像设计的。虽然卷积神经网络模型偏差很大,但用在图像上不是问题。如果把它用在图像之外的任务,就要仔细想想这些任务有没有图像用的特性。卷积层里面有很多滤波器,这些滤波器的大小是 3 × 3 × 通道。
2024-08-28 22:16:05
851
原创 Datawhale X 李宏毅苹果书 AI夏令营(深度学习入门)task3
在应用机器学习算法时,实践方法论能够帮助我们更好地训练模型。如果在 Kaggle 上的结果不太好,虽然 Kaggle 上呈现的是测试数据的结果,但要先检查训练数据的损失。看看模型在训练数据上面,有没有学起来,再去看测试的结果,如果训练数据的损失很大,显然它在训练集上面也没有训练好。接下来再分析一下在训练集上面没有学好的原因。
2024-08-25 17:34:04
776
原创 Datawhale X 李宏毅苹果书 AI夏令营(深度学习进阶)task2(2.1+2.2+2.3)
临界点其实不一定是在训练一个网络的时候会遇到的最大的障碍。一般在训练一个网络的时候,损失原来很大,随着参数不断的更新,损失会越来越小,最后就卡住了,损失不再下降。当我们走到临界点的时候,意味着梯度非常小,但损失不再下降的时候,梯度并没有真的变得很小。看下图就可以看出来范数(norm),即梯度这个向量的长度随着迭代次数增多,虽然损失不再下降,但是梯度的范数并没有真的变得很小。我们现在训练一个网络,训练到现在参数在临界点附近,再根据特征值的正负号判断该临界点是鞍点还是局部最小值。
2024-08-25 13:56:25
988
原创 Datawhale X 李宏毅苹果书 AI夏令营(深度学习入门)taks2
这里我们先设未知参数,按行拼接后的一个长向量称为接下来要定义损失。之前是 L(w, b),因为 w 跟 b 是未知的。现在未知的参数很多了,再把它一个一个列出来太累了,所以直接用 θ 来统设所有的参数,所以损失函数就变成 L(θ)。损失函数能够判断 θ 的好坏,其计算方法跟刚才只有两个参数的时候是一样的。先给定 θ 的值,即某一组 W, b,, b 的值,再把一种特征 x 代进去,得到估测出来的 y,再计算一下跟真实的标签之间的误差 e。把所有的误差通通加起来,就得到损失。接下来下一步就是优化。
2024-08-24 18:37:52
903
原创 Datawhale X 李宏毅苹果书 AI夏令营(深度学习入门)task1
简单说就是用来衡量预测值和真实值之间差值的一个数值,根据损失值可以评估假设出来的模型的好坏这个函数的输入是模型里面的参数,模型是 y = b + w ∗ x1,而 b 跟 w 是未知的,损失是函数 L(b, w),其输入是模型参数 b 跟w。损失函数输出的值代表,现在如果把这一组未知的参数,设定某一个数值的时候,这笔数值好还是不好。举一个具体的例子,假设未知的参数的设定是 b = 500,w = 1,预测未来的观看次数的函数就变成 y = 500 + x1。
2024-08-22 15:29:56
925
原创 Datawhale X 魔搭 AI夏令营第四期-魔搭生图task3学习笔记
进入魔搭社区,找到我的Notebook选择对应运行环境因为我是一天前登录的,所以需要重新使用相关账号重新登陆。大家可以根据自己的具体情况来登录,仅供参考进入后,新建终端在命令行输入如下命令下载安装和执行完成后,左侧栏出现这个文件夹双击进入Comfy...文件重启内核,进行代码执行运行完第一块代码段,会在左侧栏出现一个ComfyUI文件夹如果执行的顺利,在运行最后一段代码块时可以看到图片中绿色线画出的网址,将其复制到浏览器中打开浏览器中打开后的页面如下。
2024-08-16 14:56:33
301
原创 Datawhale X 魔搭 AI夏令营第四期-魔搭生图task2学习笔记
在Stable Diffusion这一文本到图像合成模型的框架下,Lora被用来对预训练好的大模型进行针对性优化,以实现对特定主题、风格或任务的精细化控制。扩散模型通常用于从随机噪声逐渐生成图像的过程,而ControlNet的作用在于引入额外的控制信号,使得用户能够更具体地指导图像生成的各个方面(如姿势关键点、分割图、深度图、颜色等)。通过直观的界面和集成的功能,用户可以轻松地进行模型微调、数据预处理、图像生成等任务,从而提高工作效率和生成效果。mode(可选):指定要创建的目录的权限模式。
2024-08-13 12:47:59
575
原创 kaggle中访问本地上传的图片(找到图片地址)
首先,在kaggle中左侧导航栏中找到datasets->New Dataset->Browse Files。选择Your Work->找到你想要使用的图片文件夹,点击右下角的加号。返回到代码中,右侧有一个Notebook->Add input。添加成功后,空心加号变为和image1右下角一样的黑色实心加号。返回Input,可以看到DATASETS下面已经添加进来了。点击红色圆圈中的复制符号即可复制图片存放的路径。创建成功后就可以看到数据集的详细信息。
2024-08-12 19:10:29
660
原创 动手学深度学习(zh chapter12.2/en chapter13.2)在kaggle上运行代码出现AssertionError: Torch not compiled with CUDA en
选中第一张图片中的三点,出现Notebook的信息,Seesion options->ACCLERATOR->GPU P100。修改后,重新运行一下,就不会再出现刚才的错误。
2024-08-12 12:41:50
228
原创 Datawhale X 魔搭 AI夏令营第四期-魔搭生图task1学习笔记
2.简单列举一下赛事的要求以及任务参赛者需在可图Kolors 模型的基础上训练LoRA 模型,生成无限风格,如水墨画风格、水彩风格、赛博朋克风格、日漫风格......基于LoRA模型生成 8 张图片组成连贯故事,故事内容可自定义;基于8图故事,评估LoRA风格的美感度及连贯性。
2024-08-09 12:22:41
908
原创 Pandas基础收尾map、apply函数
后续会根据自己的需要继续为大家更新其他的知识,希望能帮助更多小伙伴,也希望大家多多支持,让我有更多动力把自己一点点学习的知识写到博客里面。
2024-03-30 19:10:13
386
原创 Pandas基础之groupby
这次使用的数据依旧是前面操作使用过的天气csv文件,没有办法给宝子们粘贴了,宝子们可以自己创造一点数据进行操作练习。类似SQL: select student,sum(grade) from stu_grade group by student。学习过数据库系统原理的的小伙伴们应该对groupby函数有一定的了解,groupby根据指定的属性对数据进行分组聚合。
2024-03-30 12:09:37
217
原创 Pandas基础之对excel表格的操作
1.将指定文件夹下的excel表格合并,每个独立的表格合并后显示在大表格的sheet中。(4)所有表的表头行数要相同,通过header=1进行设置。2.将一个表格中的多个sheet合并为一个sheet。2.从第二次开始每次都与这个结果表进行合并。1.第一次读取的文件放入一个空的结果表中。3.将一个表格按条件拆分为多个sheet。4.将一个表格按条件拆分为多个独立的表格。(1)把文件夹下面所有的文件都遍历出来。拆分为多个sheet运行结果。(2)循环读取每个文件。(3)写入Excel。
2024-03-29 17:25:10
624
原创 Pandas基础之字符串(二)
7.get_dummies() 使用指定字符分割字符串,结果为一个列表。4. pad 将每一个元素都用指定的字符填充,只能使用一个字符填充。12.数据.str.title() 每一个单词的首字母大写。13.数据.str.capitalize()第一个字母大写。1.startswith() 是否以某个字符开头。5.zfill() 使用0填充 只从左边开始填充。2.endswith() 是否以某个字符结束。数据.str.lower()所有字符转成小写。11.数据.str.upper()
2024-03-28 18:15:21
664
原创 Pandas基础之字符串的操作(一)
4、join() 对每个字符都用给点的字符串拼接起来,不常用。7、partition()按照指定字符分割。5、contains() 是否包含表达式。3、get() 获取指定位置的字符串。2、split() 切分字符串。6、replace() 替换。1、cat() 拼接字符串。
2024-03-28 12:12:33
789
原创 Pandas基础之数据的替换
这次的数据是一个csv文件,所以没办法给大家粘贴了,宝子们如果要实践本文的操作,可以自己造一些数据来掌握替换相关的知识。数据一样不一样不重要,重要的是宝子们可以掌握要用的知识。大家加油,我们一起进步!
2024-03-27 18:48:45
489
原创 Pandas基础之重复值处理
False:删除所有重复值,留下没有出现过重复的。subset:用来指定特定的列,默认是所有列。subset:用来指定特定的列,默认是所有列。inplace:是否直接在原数据上进行修改。first:保留第一次出现的值。last:保留最后一次出现的值。first:保留第一次出现的值。last:保留最后一次出现的值。
2024-03-26 17:45:42
412
1
原创 Pandas基础之查找和筛选数据
这个表格是代码中使用的数据,因为csdn上面没办法传表格。宝子们,如果想使用可以粘贴到自己的excel中保存使用。
2024-03-25 16:40:53
1968
原创 Numpy基础之数组(创建全0、全一数组,ones_like创建形状相同的数组、full创建指定值的数组、full_like创建类型相同的指定值数组、基础索引和切片等与数组相关的所有操作)
【代码】Numpy基础之数组(创建全0、全一数组,ones_like创建形状相同的数组、full创建指定值的数组、full_like创建类型相同的指定值数组、基础索引和切片等与数组相关的所有操作)
2024-03-22 18:53:12
448
1
原创 Pandas基础之Merge
3.右连接 以右边表格的所有键为基准进行配对,左表中的相应列合并到左表中,对于没有匹配值的用缺失值。2.左连接 以左边表格的所有键为基准进行配对,右表中的。列合并到左表中,对于没有匹配值的用缺失值。4.外连接 返回左右两表中键的并集。1.内连接 两张表的键的。
2024-03-22 18:39:57
412
1
原创 pandas读取sql文件出现:告警UserWarning: pandas only supports SQLAlchemy connectable
错误原因:导入sql的方式更新了。
2024-03-21 12:15:21
803
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人