题目描述
给出一个小于2^32的正整数。这个数可以用一个32位的二进制数表示(不足32位用0补足)。我们称这个二进制数的前16位为“高位”,后16位为“低位”。将它的高低位交换,我们可以得到一个新的数。试问这个新的数是多少(用十进制表示)。
例如,数1314520用二进制表示为000000000000101000000111011011000(添加了11个前导0补足为32位)其中前16位为高位,即0000000000010100;后16位为低位,即0000111011011000。将它的高低位进行交换,我们得到了一个新的二进制数00001110110110000000000000010100。它即是十进制的249036820。
输入格式
一个小于2^32的正整数
输出格式
将新的数输出
输入输出样例
输入 #1
1314520
输出 #1
249036820
很水的一题,思路非常简单,只需要把输入数转二进制(注意补前导0),然后高低位交换,最后把得到的新二进制串转十进制,输出即可。
记得开long long!!!
代码如下
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;//不开long long见祖宗!!
ll n;
int a[40]; //输入数二进制表示
int b[40]; //答案二进制表示
int main()
{
cin>>n;
int k=31;
while(n>0) //输入转二进制
{
a[k]=n%2;
n/=2;
--k;
}
for(int i=0;i<16;i++) //高低位交换
b[i]=a[i+16];
for(int i=16;i<32;i++)
b[i]=a[i-16];
ll ans=0;
k=0;
for(int i=31;i>=0;i--) //二进制转十进制
{
ans+=(ll)pow(2,k)*b[i];
++k;
}
cout<<ans<<endl;
return 0;
}