浅谈最长上升子序列和最长公共子序列(含n²优化)

听大佬们解释,最长 上升 / 下降 子序列和最长公共子序列属线性DP范畴,由于本人还没有系统的对DP进行研究,所以这里就暂时先不阐述线性DP了。

最长 上升 / 下降 子序列和最长公共子序列这两类问题是非常典型的DP类型的题目,每一个算法学习书上面都少不了这两类问题,相关的题目也有很多,如:
导弹拦截
最长公共子序列
类似的题目还有很多,就不一 一举例了。

O(n²)解决最长上升子序列

例:由5个数组成的序列,分别为6 2 3 4 1,2 3 4就是其最长上升子序列(可能不唯一)。

以时间复杂度O(n²)解决最长上升子序列问题是最简单也是最常见的一种解法

首先,我们知道对于每个元素本身,其初始的最长上升子序列就是其本身,于是就用一个dp[i]数组表示以第i个元素为结尾时的最长上升子序列长度,所以,对于每个dp[i],其初始长度为其本身长度,即为1。

其次,要求dp[i]数组的每一个值,O(n²)解法采取的思想是先固定一个位置 i ,然后对其前面的每一个位置进行枚举,如果前面任何一个位置 j 出现小于 i 位置的元素的情况,就要考虑是否对 i 位置的dp数组进行更新(就是考虑以 j 为结尾的最长上升子序列的长度加上i元素,也就是+1之后,是否大于此时以 i 为结尾的最长上升子序列的长度),选取最优值。

dp[i]=max(dp[i],dp[j]+1);

最后,由于dp数组的定义,只需要输出dp数组中的最大值即可。

核心代码

for(int i=2;i<=n;i++){
        for(int j=1;j<i;j++){
            if(a[j]<=a[i])
                dp[i]=max(dp[i],dp[j]+1);
        }
    }

输出路径
有的题目还会让输出路径,也就是输出最长上升子序列,如果用O(n²)的解法,只需要再开一个前驱数组pre[i],每次更新dp数组的时候跟着更新,最后迭代输出即可。

初始化时,每个元素并没有前驱,所以pre数组初始化的值为0

完整代码:

#include <iostream>

using namespace std;
int n,max_len,max_pos;
int a[100010],dp[100010],pre[100010];

void outPath(int i){
    if(i==0) return;
    outPath(pre[i]);
    cout<<a[i]<<" ";
}

int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
    }
    for(int i=1;i<=n;i++){
        dp[i]=1;
        pre[i]=0;
    }
    for(int i=2;i<=n;i++){
        for(int j=1;j<i;j++){
            if(a[j]<=a[i] && dp[j]+1>dp[i]){
                dp[i]=dp[j]+1;
                pre[i]=j;
            }
        }

    }
    max_len=dp[1],max_pos=1;
    for(int i=2;i<=n;i++){
        if(max_len<dp[i]){
            max_len=dp[i];
            max_pos=i;
        }
    }
    cout<<max_len<<endl;
    outPath(max_pos);
    return 0;
}

O(nlogn)解决最长上升子序列

听说树状数组也可以实现O(nlogn),但是这里并没有用到树状数组,这里用的是二分法实现O(nlogn)解决最长上升子序列。

其实很容易可以看出,对于O(n²)的做法而言,其实就是暴力枚举,把每个状态都比较遍历一遍,所以会浪费很多时间。

所以就有另外一种动态规划的方法来降低复杂度,实现O(nlogn)解决该问题。

同样定义一个dp[i]数组,数组含义为最长上升子序列长度为i时,最后一个元素的最小值,那么为什么要这么定义呢?

因为我们当前的最长上升子序列长度如果已经确定,那么如果这个长度的子序列的末尾元素越小,后面的元素就可以更方便的加入到这个我们假想的上升子序列中。
同时,由于dp数组的定义,我们也可以实现二分法了。

#include <bits/stdc++.h>

using namespace std;
int a[100005],len;
int dp[100005],m[100005];


int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
    }
    dp[++len]=a[1];
    for(int i=2;i<=n;i++){

	    if(a[i]>dp[len]){ //如果a[i]大于末尾的值,则可以直接插入到序列末尾
            dp[++len]=a[i];
        }
		else{//如果a[i]并不大于末尾的值,
            //那么就去找序列中最接近a[i]的值,然后取两者的最小值赋给该子序列的末尾,
            //让该长度的子序列的末尾元素尽可能的小
            int left=0,right=len;

            while(left<right){//就是找到序列前面最接近a[i]的数
                int mid=(left+right)/2;
                    if(dp[mid]>a[i]){
                        right=mid;
                    }
                    else{
                        left=mid+1;
                    }
            }
            dp[left]=min(a[i],dp[left]);
            //dp[left]是最接近a[i]的数,取 min(a[i],dp[left])赋给长度为left的最长子序列的末尾,
            //让该长度的子序列的末尾元素尽可能的小
        }
    }

    cout<<len;
    return 0;
}


来看核心代码:

for(int i=2;i<=n;i++){
	    if(a[i]>dp[len]){
            dp[++len]=a[i];
        }
		else{
            int left=0,right=len;
            while(left<right){
                int mid=(left+right)/2;
                    if(dp[mid]>a[i]){
                        right=mid;
                    }
                    else{
                        left=mid+1;
                    }
            }
            dp[left]=min(a[i],dp[left]);
        }
    }

其实else包括的语句实现的就是让该长度的子序列的末尾元素尽可能的小,而在STL中,有两个函数可以帮我们找到需要替换掉的元素。

lower_bound会找出序列中第一个大于等于x的数
upper_bound会找出序列中第一个大于x的数

没错这俩就差个等号,如果是最小下降子序列,这两个函数也可以实现找出序列中第一个小于或小于等于x的数

int p=lower_bound(dp+1,dp+1+len,a[i])-dp;//找出序列中第一个大于等于x的数

int p=lower_bound(dp+1,dp+1+len,a[i],greater <int> ())-dp;//找出序列中第一个小于等于x的数

//upper_bound同理

这里就不对这两个函数进行详细的解释了。

那么我们的要求是让任意长度的子序列的末尾元素尽可能的小,我们要做的就是如果a[i]不大于末尾元素,那么就找到前面序列中第一个大于a[i]的元素,然后用a[i]替换掉它。让该长度的子序列的末尾元素尽可能的小。

代码:

#include <bits/stdc++.h>

using namespace std;
int a[100005],len;
int dp[100005],m[100005];


int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>a[i];
    }
    dp[++len]=a[1];
    for(int i=2;i<=n;i++){
        if(a[i]>=dp[len]){
            dp[++len]=a[i];
        }
        else{
            int p=lower_bound(dp+1,dp+1+len,a[i])-dp;
            dp[p]=a[i];
        }
    }
    cout<<len;
    return 0;
}

O(nlogn)能输出路径吗?好像也可以,但是会比较麻烦,这里就不讨论了。但是这也论证了一个观点:时间复杂度越高的算法越全能

O(n²)解决最长公共子序列

例:

5 
3 2 1 4 5
1 2 3 4 5

则他们的最长公共子序列为3 4 5(可能不唯一)
O(n²)的思路是
设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk} ,则
若xm=yn,则zk=xm=yn,且zk-1是xm-1和yn-1的最长公共子序列。
若xm≠yn且zk≠xm,则Z是xm-1和Y的最长公共子序列。
若xm≠yn且zk≠yn,则Z是X和yn-1的最长公共子序列。

由最长公共子序列问题的最优子结构性质可知,要找出X和Y的最长公共子序列,可按以下方式递归地进行:

当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(yn)即可得X和Y的一个最长公共子序列。

当xm≠yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者为X和Y的一个最长公共子序列。
用c[i][j]记录序列和的最长公共子序列的长度。
递归关系如下
在这里插入图片描述
用数组b[i][j]来保存路径,最后递归输出,如果数组b为1,则说明 i 位置的x数组和 j 位置的y数组相等,输出然后递归(i-1,j-1),如果为2,则递归(i-1,j),如果为3,则递归(i,j-1)

完整代码:

#include <bits/stdc++.h>

using namespace std;
int M[1005],N[1005],x;
int dp[1005][1005];
int b[1005][1005];

void LCS(int i,int j){
    if(i==0 || j==0) return;
    if(b[i][j]==1){
        LCS(i-1,j-1);
        cout<<M[i]<<" ";
    }
    else if(b[i][j]=2){
        LCS(i-1,j);
    }
    else{
        LCS(i,j-1);
    }
}
int main()
{
    cin>>x;
    for(int i=1;i<=x;i++){
        cin>>M[i];
    }
    for(int i=1;i<=x;i++){
        cin>>N[i];
    }
    for(int i=1;i<=x;i++){
        for(int j=1;j<=x;j++){
                if(M[i]==N[j]){
                    dp[i][j]=dp[i-1][j-1]+1;
                    b[i][j]=1;
                }
                else if(dp[i-1][j]>=dp[i][j-1]){
                    dp[i][j]=dp[i-1][j];
                    b[i][j]=2;
                }
                else{
                    dp[i][j]=dp[i][j-1];
                    b[i][j]=3;
                }
        }
    }
    cout<<dp[x][x]<<endl;
    LCS(x,x);
    return 0;
}

O(nlogn)解决最长公共子序列

最长公共子序列为例,因为两个序列都是1~n的全排列,那么两个序列元素互异且相同,也就是说只是位置不同罢了,那么我们通过一个m数组将A序列的数字在B序列中的位置表示出来,如果序列不是数字,可以用map进行存储

所以问题就转化为:
找出b序列每个元素在a序列中的位置的最长上升子序列

前面讲了这么多,看到这里应该不难理解,就直接上代码了。

#include <bits/stdc++.h>

using namespace std;
int M[100005],N[100005],len;
int dp[100005],m[100005];


int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        cin>>M[i];
        m[M[i]]=i;
    }
    for(int i=1;i<=n;i++){
        cin>>N[i];
    }
    dp[++len]=m[N[1]];
    for(int i=2;i<=n;i++){
        if(m[N[i]]>=dp[len]){
            dp[++len]=m[N[i]];
        }
        else{
            int p=lower_bound(dp+1,dp+1+len,m[N[i]])-dp;
            dp[p]=m[N[i]];
        }
    }
    cout<<len;
    return 0;
}

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值