LeetCode 1764. 通过连接另一个数组的子数组得到一个数组
难度:中等
【Tag:贪心,双指针】
题目描述
给你一个长度为 n
的二维整数数组 groups
,同时给你一个整数数组 nums
。
你是否可以从 nums
中选出 n
个 不相交 的子数组,使得第 i
个子数组与 groups[i]
(下标从 0
开始)完全相同,且如果 i > 0
,那么第 (i-1)
个子数组在 nums
中出现的位置在第 i
个子数组前面。(也就是说,这些子数组在 nums
中出现的顺序需要与 groups
顺序相同)
如果你可以找出这样的 n
个子数组,请你返回 true
,否则返回 false
。
如果不存在下标为 k
的元素 nums[k]
属于不止一个子数组,就称这些子数组是 不相交 的。子数组指的是原数组中连续元素组成的一个序列。
示例 1:
输入:groups = [[1,-1,-1],[3,-2,0]], nums = [1,-1,0,1,-1,-1,3,-2,0]
输出:true
解释:你可以分别在 nums 中选出第 0 个子数组 [1,-1,0,1,-1,-1,3,-2,0] 和第 1 个子数组 [1,-1,0,1,-1,-1,3,-2,0] 。
这两个子数组是不相交的,因为它们没有任何共同的元素。
示例 2:
输入:groups = [[10,-2],[1,2,3,4]], nums = [1,2,3,4,10,-2]
输出:false
解释:选择子数组 [1,2,3,4,10,-2] 和 [1,2,3,4,10,-2] 是不正确的,因为它们出现的顺序与 groups 中顺序不同。
[10,-2] 必须出现在 [1,2,3,4] 之前。
示例 3:
输入:groups = [[1,2,3],[3,4]], nums = [7,7,1,2,3,4,7,7]
输出:false
解释:选择子数组 [7,7,1,2,3,4,7,7] 和 [7,7,1,2,3,4,7,7] 是不正确的,因为它们不是不相交子数组。
它们有一个共同的元素 nums[4] (下标从 0 开始)。
提示:
- g r o u p s . l e n g t h = = n {groups.length == n} groups.length==n
- 1 < = n < = 1 0 3 {1 <= n <= 10^3} 1<=n<=103
- 1 < = g r o u p s [ i ] . l e n g t h , s u m ( g r o u p s [ i ] . l e n g t h ) < = 1 0 3 {1 <= groups[i].length, sum(groups[i].length) <= 10^3} 1<=groups[i].length,sum(groups[i].length)<=103
- 1 < = n u m s . l e n g t h < = 1 0 3 {1 <= nums.length <= 10^3} 1<=nums.length<=103
- − 1 0 7 < = g r o u p s [ i ] [ j ] , n u m s [ k ] < = 1 0 7 {-10^7 <= groups[i][j], nums[k] <= 10^7} −107<=groups[i][j],nums[k]<=107
思路分析
贪心地枚举 nums
中每一个数 nums[j]
作为子数组的开始,判断其是否与当前 groups[i]
匹配,是则将指针 i
往后移一位,将指针 j
往后移动 groups[i].length
位,否则将指针 j
往后移动一位。
如果 i
走到了 groups.length
,说明所有的子数组都匹配上了,返回 true
,否则返回 false
。
实现
class Solution {
public:
bool check(vector<int> &a, vector<int> &b, int j) {
int m = a.size(), n = b.size();
int i = 0;
for ( ; i < m && j < n; i ++, j ++) {
if(a[i] != b[j]) {
return false;
}
}
return i == m;
}
bool canChoose(vector<vector<int>>& groups, vector<int>& nums) {
int n = groups.size(), m = nums.size();
int i = 0;
for (int j = 0; i < n && j < m;) {
if(check(groups[i], nums, j)) {
j += groups[i].size();
i ++;
} else {
j ++;
}
}
return i == n;
}
};