【每日一题】1764. 通过连接另一个数组的子数组得到一个数组

这篇博客介绍了如何解决LeetCode 1764题,关于通过连接 nums 中子数组来匹配给定的 groups 顺序,通过双指针技巧和贪心策略判断是否能找到不相交的子数组。关键在于正确遍历并保持子数组的不交叉条件。
摘要由CSDN通过智能技术生成

LeetCode 1764. 通过连接另一个数组的子数组得到一个数组

难度:中等
【Tag:贪心,双指针】

题目描述

给你一个长度为 n 的二维整数数组 groups ,同时给你一个整数数组 nums

你是否可以从 nums 中选出 n不相交 的子数组,使得第 i 个子数组与 groups[i] (下标从 0 开始)完全相同,且如果 i > 0 ,那么第 (i-1) 个子数组在 nums 中出现的位置在第 i个子数组前面。(也就是说,这些子数组在 nums 中出现的顺序需要与 groups 顺序相同)

如果你可以找出这样的 n 个子数组,请你返回 true ,否则返回 false

如果不存在下标为 k 的元素 nums[k] 属于不止一个子数组,就称这些子数组是 不相交 的。子数组指的是原数组中连续元素组成的一个序列。

示例 1:

输入:groups = [[1,-1,-1],[3,-2,0]], nums = [1,-1,0,1,-1,-1,3,-2,0]
输出:true
解释:你可以分别在 nums 中选出第 0 个子数组 [1,-1,0,1,-1,-1,3,-2,0] 和第 1 个子数组 [1,-1,0,1,-1,-1,3,-2,0] 。
这两个子数组是不相交的,因为它们没有任何共同的元素。

示例 2:

输入:groups = [[10,-2],[1,2,3,4]], nums = [1,2,3,4,10,-2]
输出:false
解释:选择子数组 [1,2,3,4,10,-2] 和 [1,2,3,4,10,-2] 是不正确的,因为它们出现的顺序与 groups 中顺序不同。
[10,-2] 必须出现在 [1,2,3,4] 之前。

示例 3:

输入:groups = [[1,2,3],[3,4]], nums = [7,7,1,2,3,4,7,7]
输出:false
解释:选择子数组 [7,7,1,2,3,4,7,7] 和 [7,7,1,2,3,4,7,7] 是不正确的,因为它们不是不相交子数组。
它们有一个共同的元素 nums[4] (下标从 0 开始)。

提示:

  • g r o u p s . l e n g t h = = n {groups.length == n} groups.length==n
  • 1 < = n < = 1 0 3 {1 <= n <= 10^3} 1<=n<=103
  • 1 < = g r o u p s [ i ] . l e n g t h , s u m ( g r o u p s [ i ] . l e n g t h ) < = 1 0 3 {1 <= groups[i].length, sum(groups[i].length) <= 10^3} 1<=groups[i].length,sum(groups[i].length)<=103
  • 1 < = n u m s . l e n g t h < = 1 0 3 {1 <= nums.length <= 10^3} 1<=nums.length<=103
  • − 1 0 7 < = g r o u p s [ i ] [ j ] , n u m s [ k ] < = 1 0 7 {-10^7 <= groups[i][j], nums[k] <= 10^7} 107<=groups[i][j],nums[k]<=107

思路分析

贪心地枚举 nums 中每一个数 nums[j] 作为子数组的开始,判断其是否与当前 groups[i] 匹配,是则将指针 i 往后移一位,将指针 j 往后移动 groups[i].length 位,否则将指针 j 往后移动一位。

如果 i 走到了 groups.length,说明所有的子数组都匹配上了,返回 true,否则返回 false

实现

class Solution {
public:
    bool check(vector<int> &a, vector<int> &b, int j) {
        int m = a.size(), n = b.size();
        int i = 0;
        for ( ; i < m && j < n; i ++, j ++) {
            if(a[i] != b[j]) {
                return false;
            }
        }
        return i == m;
    }
    bool canChoose(vector<vector<int>>& groups, vector<int>& nums) {
        int n = groups.size(), m = nums.size();
        int i = 0;
        for (int j = 0; i < n && j < m;) {
            if(check(groups[i], nums, j)) {
                j += groups[i].size();
                i ++;
            } else {
                j ++;
            }
        }
        return i == n;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值