第1关:使用Spark SQL统计战斗机飞行性能
任务描述
通过飞行速度统计出战斗机飞行性能排比。
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL ") \
.master("local")\
.getOrCreate()
df = spark.read.json("/root/jun.json").coalesce(1)
df.createOrReplaceTempView("table1")
out=spark.sql("select cast(regexp_replace(regexp_extract(`最大飞行速度`,'[\\\d,\\\.]+',0),'\\\,','') as float) as speed,`名称` from table1 order by cast(regexp_replace(regexp_extract(`最大飞行速度`,'[\\\d,\\\.]+',0),'\\\,','') as float) DESC limit 3")
out.write.mode("overwrite").format("csv").save("/root/airspark")
spark.stop()
第2关:使用Spark SQL统计各个研发单位研制战斗机占比
任务描述
统计出各个研发单位研制战斗机占比。
# coding=utf-8
from pyspark.sql import SparkSession
#**********Begin**********#
#创建SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL ") \
.master("local")\
.getOrCreate()
#读取/root/jun.json中数据
df = spark.read.json("/root/jun.json").coalesce(1)
#创建视图
df.createOrReplaceTempView("table1")
#统计出全球各研发单位研制的战斗机在全球所有战斗机中的占比
out=spark.sql("select concat(round(count(`研发单位`)*100/(select count(`研发单位`) as num from table1 where `研发单位` is not null and `名称`is not null ),2),'%') as ratio, `研发单位` from table1 where `研发单位` is not null and `名称`is not null group by `研发单位`")
#保存结果
out.write.mode("overwrite").format("csv").save("/root/airspark")
#**********End**********#
spark.stop()