稀疏数组

本文介绍了数据结构的基本概念,包括线性结构和非线性结构,如数组、链表、树形结构和图状结构。重点讨论了稀疏数组的概念,它用于压缩存储大量零值的数据,例如棋盘。通过示例展示了如何将原始二维数组转换为稀疏数组,再从稀疏数组还原回原始数组的过程,以此节省存储空间。
摘要由CSDN通过智能技术生成

数据结构

1. 线性结构

  1. 定义:线性结构是一个有序数据元素的集合。
  2. 特点:数据元素之间存在一对一的线性关系。
  3. 类型:有2种,顺序存储结构(数组)、链式存储结构(链表)。顺序存储的线性表称为顺序表,顺序表中的存储元素是连续的。链式存储的线性表称为链表,链表中地存储元素不一定是连续的,元素节点中存放数据元素以及相邻元素的地址信息。
  4. 应用:数组、队列、链表、栈。

非线性结构

  1. 定义:非线性结构,数学用语,其逻辑特征是一个节点元素可能有多个直接前驱和多个直接后继。
  2. 特点:1对多/多对一/多对多。
  3. 类型:3种。1)集合结构:集合中任何两个数据元素之间都没有逻辑关系,组织形式松散。(eg.二维数组、多维数组。)2)树形结构:具有分支、层次特性,其形态有点像自然界中的树。(树结构。)3)图状结构:图状结构中的节点按逻辑关系相互缠绕,任何两个节点都可以邻接。
  4. 应用:广义表、二维数组…

稀疏数组

在这里插入图片描述
(图片来源–尚硅谷)

  1. 作用:压缩内容。
    如图:原始数组,6row7colomn=42单元;稀疏数组:9row3colomn=27单元。两者存储的信息量是一样的。
  2. 代码
package com.atguigu.sparsearray;


/*
* 棋盘:原始数组=》稀疏数组=》原始数组*/
public class SparseArray {
    public static void main(String[] args) {
        //原始数组=》稀疏数组
        //创建原始的二维数组,
        //0表示没有棋子,1表示黑棋,2表示蓝棋
        int [][]chessArr1=new int[11][11];
        chessArr1[1][2]=1;
        chessArr1[2][3]=2;

        System.out.println("原始的二维数组:");
        for (int[] row : chessArr1) {
            for(int data:row){
                System.out.printf("%d\t",data);
            }
            System.out.println();
        }

        //创建稀疏数组
        //1.要点:value有效值的个数,通过遍历原始数组获得
        int sum=0;
        for (int i = 0; i < 11; i++) {
            for (int j = 0; j < 11; j++) {
                if (chessArr1[i][j]!=0){
                    sum++;
                }
            }
        }
        System.out.println("有效值sum="+sum);

        //2.建立稀疏数组
        int[][] sparseArr = new int[sum + 1][3];
        sparseArr[0][0]=11;
        sparseArr[0][1]=11;
        sparseArr[0][2] = sum;

        //找value,并获取index:i,j   并获取chessArr1(i,j)
        int count=0;    //计数、递增count++,给sparseArr[?][]行赋值
        for (int i = 0; i < 11; i++) {
            for (int j = 0; j < 11; j++) {
                if (chessArr1[i][j] != 0) {
                    count++;    //执行一边count++,count=1,下一行代码接收的是1,不是0
                    sparseArr[count][0]=i;
                    sparseArr[count][1]=j;
                    sparseArr[count][2] = chessArr1[i][j];
                }
            }
        }
        //输出方式1
        for (int[] row : sparseArr) {
            for (int data : row) {
                System.out.printf("%d\t",data);
            }
            System.out.println();
        }

        /*//输出方式2
        System.out.println();
        System.out.println("输出稀疏数组");
        for (int i = 0; i < sparseArr.length; i++) {
            System.out.printf("%d\t%d\t%d\t\n",sparseArr[i][0],sparseArr[i][1],sparseArr[i][2]);
        }
        System.out.println();   //分割代码块作用*/

        //稀疏数组=》原始数组
        int[][] chessArr2=new int[11][11];
        for (int i = 1; i <=sum; i++) {
                chessArr2[sparseArr[i][0]][sparseArr[i][1]] = sparseArr[i][2];
        }

        //输出原始数组
        System.out.println("输出原数组");
        for (int[] row : chessArr2) {
            for (int data : row) {
                System.out.printf("%d\t", data);
            }
            System.out.println();
        }
    }
}
参考资源链接:[数据结构算法线性与非线性结构详解](https://wenku.csdn.net/doc/2oi4tygu74?utm_source=wenku_answer2doc_content) 稀疏数组是一种用于表示稀疏数据的存储结构,能够显著减少存储空间的消耗。在处理大型二维数组,尤其是数组中大部分元素为零时,使用稀疏数组可以有效地节省内存。对于Java开发者来说,理解如何在二维数组和稀疏数组之间进行转换是数据结构算法学习中的一个重要环节。 首先,我们来看如何从二维数组创建稀疏数组。创建稀疏数组的过程通常包括以下几个步骤: 1. 遍历原始的二维数组,统计非零元素的个数。 2. 根据非零元素的个数创建一个新的二维数组,其大小为[非零元素个数+1][3]。这里的+1是用于存储稀疏数组的行数、列数和非零元素的总数。 3. 将原始数组的行数、列数和非零元素的总数存入稀疏数组的第一行。 4. 遍历原始数组,将非零元素的行索引、列索引和值依次存入稀疏数组的后续行中。 接下来,我们了解如何从稀疏数组恢复二维数组的过程: 1. 读取稀疏数组的第一行,获取原始数组的行数、列数和非零元素总数。 2. 根据获取的行数和列数创建一个新的二维数组。 3. 读取稀疏数组的第二行及之后的行,根据行索引、列索引和值将非零元素填充到新创建的二维数组中。 以下是一个简单的Java代码示例,展示了如何实现从二维数组到稀疏数组的转换以及反向过程: ```java public class SparseArray { public static void main(String[] args) { // 假设有一个二维数组 int[][] arr = { {1, 0, 0}, {0, 0, 2}, {0, 3, 0} }; // 将二维数组转换为稀疏数组 int[][] sparseArr = toSparseArray(arr); // 打印稀疏数组 printSparseArray(sparseArr); // 将稀疏数组恢复为二维数组 int[][] arr2 = toNormalArray(sparseArr); // 打印恢复后的二维数组 printArray(arr2); } // 将二维数组转换为稀疏数组的函数 public static int[][] toSparseArray(int[][] arr) { // ... 实现细节,包含遍历、创建新数组和填充过程 } // 打印稀疏数组的函数 public static void printSparseArray(int[][] sparseArr) { // ... 实现细节,包含遍历和打印过程 } // 将稀疏数组恢复为二维数组的函数 public static int[][] toNormalArray(int[][] sparseArr) { // ... 实现细节,包含读取稀疏数组数据和创建二维数组过程 } // 打印二维数组的函数 public static void printArray(int[][] arr) { // ... 实现细节,包含遍历和打印过程 } } ``` 在上述代码中,我们定义了四个函数分别用于转换和打印稀疏数组以及恢复二维数组。每个函数的具体实现需要依据前面所述的步骤来完成。 掌握稀疏数组的转换原理和实现方法,对于处理大规模数据集的存储和优化具有重要意义。通过转换到稀疏数组,我们可以有效减少存储空间的需求,并且在需要时能够快速地恢复原始数据结构。更多关于稀疏数组的应用和转换细节,可以参考《数据结构算法线性与非线性结构详解》,这本书详细讲解了数据结构算法的基础知识,以及它们在实际编程中的具体应用,是数据结构学习者的重要参考资料。 参考资源链接:[数据结构算法线性与非线性结构详解](https://wenku.csdn.net/doc/2oi4tygu74?utm_source=wenku_answer2doc_content)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值