机器学习以及matlab和数据分析
文章平均质量分 84
本专栏以机器学习以及matlab和数据分析相关内容为基准,机器学习主要在jupyternotebook里面书写,matlab在2018b版本内运行,数据分析采用C语言实现,主要包含这三方面的内容,后续会持续更新
张小鱼༒
一个浑水摸鱼的小鱼博主,博文更新看时间,有时间就写博文,没有时间就更新的慢,但是都是我认真写出来的博文,喜欢我的博文,可以交流支持奥
展开
-
MATLAB里面的GUID界面设计案例
本文主要是对MATLAB里面界面GUID设计简介以及案例举例。原创 2023-06-25 09:29:06 · 858 阅读 · 0 评论 -
sklearn——机器学习库相关数据集的使用,以及机器学习的相关算法介绍
本文主要介绍scikit-learn数据库,以及里面的几个数据集的简单说明。scikit-learn是Python语言开发的机器学习库,一般简称为sklearn,目前算是通用机器学习算法库中实现得比较完善的库了。其完善之处不仅在于实现的算法多,还包括大量详尽的文档和示例。其文档写得通俗易懂,完全可以当成机器学习的教程来学习。以上就是今天的内容~如有问题、建议,请您在评论区留言💬哦。原创 2023-06-26 00:15:00 · 766 阅读 · 6 评论 -
机器学习理论知识部分——朴素贝叶斯
本文主要是对机器学习理论部分的讲解,朴素贝叶斯分类器是基于特征独立性假设的概率模型。具体来说,朴素贝叶斯分类器假设每个特征与其他特征都是独立的,也就是说,每个特征对于分类结果的影响是相互独立的。这个假设在实际应用中并不总是成立,但是在很多情况下,朴素贝叶斯分类器仍然能够取得很好的分类效果。在朴素贝叶斯分类器中,对于一个给定的样本,我们需要计算它属于每个类别的概率,并选择概率最大的类别作为分类结果。原创 2023-06-25 08:57:16 · 522 阅读 · 0 评论 -
机器学习——手写数据集的介绍以及案例讲解
NIST数据集是一个常用的手写数字识别数据集,包含了60000张训练图片和10000张测试图片。每张图片大小为28x28像素,灰度级别为0~255。MNIST数据集中的图片数据以ubyte格式存储,ubyte是一种无符号字节类型,取值范围在0~255之间。MNIST数据集的图像数据文件为"train-images-idx3-ubyte.gz"和"t10k-images-idx3-ubyte.gz",其中前者存储了训练数据,后者存储了测试数据。这两个文件都可以从MNIST官方网站上下载。原创 2023-06-25 08:35:47 · 2239 阅读 · 0 评论 -
MATLAB数值计算介绍以及GUID界面的简单介绍
3. 微分方程求解:MATLAB提供了多种常微分方程和偏微分方程求解方法,如欧拉法、龙格库塔法等。1. 矩阵运算:MATLAB提供了强大的矩阵运算功能,包括矩阵乘法、矩阵求逆、矩阵转置等。6. 统计分析:MATLAB提供了多种统计分析工具,包括假设检验、方差分析、回归分析等。2. 数值积分:MATLAB提供了多种数值积分方法,如梯形法、辛普森法、高斯积分法等。4. 最优化:MATLAB提供了多种最优化算法,包括线性规划、非线性规划、整数规划等。原创 2023-06-26 00:15:00 · 2460 阅读 · 0 评论 -
机器学习聚类——DBSCAN(Density-based spatial clustering of applications with noise,基于密度的聚类算法)
本文主要介绍聚类——DBSCAN(Density-based spatial clustering of applications with noise,基于密度的聚类算法),以下案例仅供参考DBSCAN(Density-based spatial clustering of applications with noise,基于密度的聚类算法)是一种常用的聚类算法,它可以发现任意形状的聚类,并且可以区分噪声点。原创 2023-06-09 00:15:00 · 401 阅读 · 0 评论 -
Matlab中求解线性方程组——高斯消元法、LU分解法、QR分解法、SVD分解法、迭代法等
Matlab中求解线性方程组有多种方法,常用的包括高斯消元法、LU分解法、QR分解法、SVD分解法、迭代法等原创 2023-06-08 10:40:36 · 11295 阅读 · 0 评论 -
机器学习聚类算法——BIRCH算法、DBSCAN算法、OPTICS算法
BIRCH(Balanced Iterative Reducing and Clustering using Hierarchies,平衡迭代规约和层次聚类)是一种基于树结构的聚类算法,其主要思想是使用一棵 CF 树(Clustering Feature Tree,聚类特征树)来表示数据集,通过不断对 CF 树进行迭代规约和层次聚类来实现对数据集的聚类。该算法具有高效性和可扩展性,并且可以处理大数据集。原创 2023-06-07 17:14:05 · 2751 阅读 · 0 评论 -
使用MATLAB将Excel里面的数据导入,并且将MATLAB数据导入到Excel里面的命令介绍
其中,`filename`参数指定要读取的Excel文件名,`sheet`参数指定要读取的工作表名,`range`参数指定要读取的单元格范围。如果不需要其中的某个返回值,可以用波浪线`~`代替。其中,`filename` 是你要写入的 Excel 文件名,`M` 是要写入的数据矩阵,`sheet` 是你要写入数据的工作表名称,`range` 是要写入数据的单元格范围。这个例子将把矩阵 `data` 写入到文件 `example.xlsx` 的 `Sheet1` 工作表的第一行第一列到第三列的单元格中。原创 2023-06-11 16:17:33 · 26747 阅读 · 2 评论 -
MATLAB迭代的三种方式以及相关案例举例
本文主要介绍MATLAB三种迭代方式在MATLAB中,迭代通常使用以下三种方式,分别是for循环、while循环和parfor循环。原创 2023-06-06 11:19:19 · 9087 阅读 · 0 评论 -
MATLAB矩阵的分解函数与案例举例
在 MATLAB 中,有许多矩阵分解的函数可供使用,其中包括奇异值分解(SVD)、QR 分解、LU 分解、Cholesky 分解等。下面我将简单介绍一下这些分解方法,并给出一些相关的 MATLAB 函数的案例。以上就是今天的内容~如有问题、建议,请您在评论区留言💬哦。原创 2023-06-06 10:49:08 · 2176 阅读 · 0 评论 -
机器学习——聚类算法的评分函数
假设有一个数据集包含 $n$ 个点,每个点有 $m$ 个特征,现在需要将这些点分为 $k$ 个簇。其中,$a_i$ 表示数据点 $i$ 到其所属簇中所有其他点的平均距离,$b_i$ 表示数据点 $i$ 到距离它最近的其他簇中所有点的平均距离,轮廓系数的取值范围为 $[-1, 1]$,值越大则表示聚类效果越好。根据轮廓系数的取值范围,可以评估聚类效果的好坏。其中,$n$ 表示数据点总数,$k$ 表示聚类数目,CHI 的值越大则表示聚类效果越好。其中,$k$ 表示聚类数目,DBI 的值越小则表示聚类效果越好。原创 2023-06-08 10:49:41 · 1560 阅读 · 0 评论 -
MATLAB当中线性方程组、不定方程组、奇异方程组、超定方程组的介绍
不定方程组是指未知数个数大于方程个数的方程组。不定方程组通常没有唯一解,而是有无穷多个解。不定方程组的求解是数学中的一个重要问题,涉及到线性代数、数论、组合数学等多个领域。不定方程组的求解方法有很多种,其中比较常见的方法包括高斯消元法、初等变换法、克莱姆法则、列主元消去法等。这些方法都需要根据不同的具体情况进行选择和应用。在实际应用中,不定方程组的求解经常涉及到矩阵初等变换和线性方程组的解法。矩阵初等变换是指将矩阵中的一行或一列乘以非零常数,或者将矩阵中的一行或一列加上另一行或另一列的若干倍。原创 2023-05-31 00:15:00 · 5964 阅读 · 0 评论 -
机器学习——随机森林算法、极端随机树和单颗决策树分类器对手写数字数据进行对比分析
随机森林也是基于决策树的算法,只不过是利用集成的思想来提升单颗决策树的分类性能。主要特点是由于随机选择样本和特征,所以不容易陷入过拟合。随机森林算法的主要步骤从样本集中用Bootstrap随机选取n个样本,并从所有属性中随机选取K个属性,选择最佳分割属性作为节点建立分类器(CART,SVM等)重复以上m次,即建立了m个分类器,并通过投票表决结果,决定数据属于哪一类。随机森林是一种集成学习算法,它将许多决策树组合在一起来提高分类性能。原创 2023-05-29 18:24:51 · 2613 阅读 · 0 评论 -
机器学习集成学习——GBDT(Gradient Boosting Decision Tree 梯度提升决策树)算法
DT-Decision Tree决策树,GB是Gradient Boosting,是一种学习策略,GBDT的含义就是用Gradient Boosting的策略训练出来的DT模型在前几年深度学习还没有大行其道之前,GBDT在各种竞赛是大放异彩。一是效果确实挺不错。二是即可以用于分类也可以用于回归。三是可以筛选特征原创 2023-05-23 20:25:53 · 18255 阅读 · 0 评论 -
MATLAB语句实现方阵性质的验证
其中,isSquare判断矩阵是否是方阵,istriu和istril分别判断矩阵是否是上三角矩阵和下三角矩阵,isequal判断矩阵是否是对称矩阵,all(eig(A) > 0)判断矩阵是否是正定矩阵,det(A) == 0判断矩阵是否是奇异矩阵。(2) 上三角矩阵:一个上三角矩阵是一个方阵,它的下三角部分都是零。(3) 下三角矩阵:一个下三角矩阵是一个方阵,它的上三角部分都是零。(4) 对称矩阵:一个对称矩阵是一个方阵,它的转置等于它本身。(6) 奇异矩阵:一个奇异矩阵是一个方阵,它的行列式为零。原创 2023-05-23 11:33:36 · 1061 阅读 · 0 评论 -
机器学习集成学习——Adaboost分离器算法
本文主要介绍Adaboost集成学习算法,以及一些案例举例Adaboost是一种集成学习算法,用于构建一个强大的分类器或回归器。在Adaboost中,每个弱分类器/回归器都是由弱学习算法(例如决策树或线性回归)构成的。每个弱分类器/回归器都对样本进行分类或预测,并根据分类/预测的准确性进行加权。然后,所有弱分类器/回归器的加权和被用作最终分类器/回归器。Adaboost算法通过迭代地训练弱分类器/回归器,并调整样本的权重来提高整体模型的准确性。原创 2023-05-23 10:35:27 · 1827 阅读 · 5 评论 -
机器学习之SVM分类器介绍——核函数、SVM分类器的使用
本文简单介绍SVM分类器、以及核函数、SVM分类器的应用。以下案例经供参考SVM是按照监督类学习方式进行运作的。即:数据当中含有目标值。SVM采用监督学习方式,对数据进行二分类(这点跟逻辑回归一样)。但是,SVM和逻辑回归(LR)有有很多不同点。两者的相同点二者都是线性分类器二者都是监督学习算法都属于判别模型(KNN, SVM, LR都属于判别模型),所谓判别模型就是指:通过决策函数,判别各个样本之间的差别来进行分类。二者的损失函数和目标函数不一样。二者对数据和参数的敏感度不同。原创 2023-04-20 09:48:15 · 7729 阅读 · 0 评论 -
MATLAB绘图函数的相关介绍——海底测量、二维与三维图形绘制
ATLAB绘图函数的相关介绍——海底测量、二维与三维图形绘制。原创 2023-05-09 11:40:36 · 3962 阅读 · 1 评论 -
机器学习算法——KD树算法介绍以及案例介绍
kd树(k-dimensional树的简称),是一种分割k维数据空间的数据结构,主要应用于多维空间关键数据的近邻查找(Nearest Neighbor)和近似最近邻查找(Approximate Nearest Neighbor)。其实KDTree就是二叉查找树(Binary Search Tree,BST)的变种。二叉查找树的性质如下:1)若它的左子树不为空,则左子树上所有结点的值均小于它的根结点的值;原创 2023-04-10 19:51:58 · 2218 阅读 · 1 评论 -
机器学习的一些常见算法介绍【线性回归,岭回归,套索回归,弹性网络】
机器学习是一门从数据中研究算法的科学学科。机器学习直白来讲,是根据已有的数据,进行算法选择,并基于算法和数据构建模型,最终对未来进行预测。通过数据训练出一个模型->预测未知属性。#定义numpy数组数据,分别基于一元线性回归公式和向量形式计算线性权重和偏置值;#计算结果与ScikitLearn中提供的线性回归函数计算结果进行比较。[10.95, 11.18], #使用array函数创建二维数组])x = data[:,0] #第一列数据为自变量x,一维数组。原创 2023-03-28 21:21:38 · 883 阅读 · 3 评论 -
matlab系统环境思维导图
matlab系统环境思维导图介绍原创 2023-02-22 19:31:14 · 255 阅读 · 0 评论 -
MATLAB求函数极限的简单介绍
使用matlab对函数极限进行计算,比起传统的计算要方便许多,下面以小部分案例为引,引出matlab对函数极限的运算。提示:以下是本篇文章正文内容,下面案例可供参考极限的定义普通极限左极限右极限1.2、matlab实现方法L=limit(fun, x, x0) % //普通极限L=limit(fun, x, x0, 'left') % //左极限L=limit(fun, x, x0, 'right') % //右极限。原创 2023-03-23 11:48:15 · 1578 阅读 · 0 评论 -
机器学习相关概念思维导图
机器学习相关概念思维导图:原创 2023-02-22 19:34:59 · 190 阅读 · 0 评论