Codeforces Round #770 (Div. 2) F. Fibonacci Additions

算法分析

差分变种

事实证明关同步 是比scanf快的

题解先gugu了 放个代码 明天再来补

AC Code

#include<bits/stdc++.h>
#define int long long
using namespace std;
const int N = 3e5 + 10;
int a[N],b[N],c[N],d[N],f[N];
int zero = 0;
int n,q,mod;
 
void inline update(int pos,int val)
{
    if(pos >= 1 && pos <= n)
    {
        zero -= (d[pos] == 0);
        d[pos] = (d[pos] + val + mod) % mod;
        zero += (d[pos] == 0);
    }
 
    return ;
}
 
signed main()
{
    cin.tie(0);
    ios::sync_with_stdio(false);
    //scanf("%lld%lld%lld",&n,&q,&mod);
    cin >> n >> q >> mod;
    for(int i = 1;i <= n;i ++) cin >> a[i];
    for(int i = 1;i <= n;i ++) cin >> b[i];
 
    for(int i = 1;i <= n;i ++) c[i] = a[i] - b[i];
 
    //d[i] = c[i] - c[i - 1] - c[i - 2]
    d[1] = c[1] % mod;
    d[2] = (c[2] - c[1] + mod) % mod;
 
    for(int i = 3;i <= n;i ++) d[i] = (c[i] - c[i - 1] + mod - c[i - 2] + mod)% mod;
    for (int i = 1; i <= n; i++) zero += (d[i] == 0);
 
    f[1] = 1,f[2] = 1;
    for(int i = 3;i <= n + 2;i ++) f[i] = (f[i - 1] + f[i - 2]) % mod;
 
    for(int i = 1;i <= q;i ++)
    {
        char op;int L,R;
        cin >> op >> L >> R;
        if(op == 'A')
        {
            //d[l] += 1
            //d[r + 1] -= (f[R - L + 2])
            //d[r + 2] -= f[R - L + 1]
            update(L,1);
            update(R + 1,- f[R - L + 2]);
            update(R + 2,- f[R - L + 1]);
        }
        else
        {
            update(L,-1);
            update(R + 1,f[R - L + 2]);
            update(R + 2,f[R - L + 1]);
        }
        if(zero == n) puts("YES");
        else puts("NO");
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cold啦啦啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值