快速幂求逆元

快速幂求逆元

我们首先看一下乘法逆元的定义,若整数 b , m b,m bm 互质,并且对于任意的整数 a a a,如果满足 b ∣ a b|a ba,则存在一个整数 x x x,使得 a b \frac {a}{b} ba a × x ( m o d   m ) a×x(mod\ m) a×x(mod m),则称 x x x b b b 的模 m m m 乘法逆元,记为 b − 1 ( m o d   m ) b^{−1}(mod\ m) b1(mod m)
b b b 存在乘法逆元的充要条件是 b b b 与模数 m m m 互质。当模数 m m m 为质数时, b m − 2 b^{m−2} bm2 即为 b b b 的乘法逆元(这是可以证明的)。一定要注意逆元有可能是不存在的,当 b b b m m m不互质时,逆元就是不存在的。我们求得就是在 m m m为质数的情况下的逆元,这样问题就转换为了求 b m − 2   m o d   m b^{m-2}\ mod\ m bm2 mod m,这时的做法就和快速幂一模一样了,参考
快速幂算法
接下来看一下快速幂求逆元的代码:

#include<iostream>
#include<algorithm>

using namespace std;

typedef long long LL;

int n;

int qmi(int a, int k, int p)
{
    int res = 1;
    while(k)
    {
        if(k & 1) res = (LL)res * a % p;
        k >>= 1;
        a = (LL)a * a % p;
    }
    
    return res;
}

int main()
{
    scanf("%d", &n);
    
    while(n --)
    {
        int a, p;
        scanf("%d%d", &a, &p);
        
        int res = qmi(a, p - 2, p);
        if(a % p) printf("%d\n", res);//这里为什么不用a与p互质这个条件,而选择相对弱一点的a是否为p的倍数呢,因为这道题中已经限制了p为质数
        else printf("impossible\n");
    }
    
    return 0;
}
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值