题目
题目描述
输入 n n n 个不超过 1 0 9 10^9 109 的单调不减的(就是后面的数字不小于前面的数字)非负整数
a 1 , a 2 , … , a n a_1,a_2,\dots,a_{n} a1,a2,…,an,然后进行 m m m 次询问。对于每次询问,给出一个整数
q q q,要求输出这个数字在序列中第一次出现的编号,如果没有找到的话输出 − 1 -1 −1 。输入格式
第一行 2 2 2 个整数 n n n 和 m m m,表示数字个数和询问次数。
第二行 n n n 个整数,表示这些待查询的数字。
第三行 m m m 个整数,表示询问这些数字的编号,从 1 1 1 开始编号。
输出格式
输出一行, m m m 个整数,以空格隔开,表示答案。
样例 #1
样例输入 #1
11 3 1 3 3 3 5 7 9 11 13 15 15 1 3 6
样例输出 #1
1 2 -1
提示
数据保证, 1 ≤ n ≤ 1 0 6 1 \leq n \leq 10^6 1≤n≤106, 0 ≤ a i , q ≤ 1 0 9 0 \leq a_i,q \leq 10^9 0≤ai,q≤109, 1 ≤ m ≤ 1 0 5 1 \leq m \leq 10^5 1≤m≤105
思路
这里使用暴力遍历肯定是会超时的。因此使用二分。二分搜索模板网上都有模板,这里讲一下我在开始时自己写2分的一些坑点。
更新左右点时的注意点:
在更新左右点的时候由于是根据索引二分,索引都是一个整数。如果更新时都是将左右点更新为中点是不行的,因为考虑一种情况如果给定数列
1 1 1 2 2 2
如果需要查到的数是2,第一次中点值是1,因为(2+1)/2等于1.5小数部分被直接舍弃。(假设索引从1开始)根据上面的方法,左点修改为中心值1,其原值就是1,也就是说没有更新,这样就会陷入一个死循环。正确的方法是如果中点值小于目标值,就把左点更新为中点加1.而右边不需要因为这里是小数部分被舍弃,也就是实际值大于该值,而右边不会
循环结束条件的注意点:
刚开始的时候总是会一直到目标值就直接返回,(就是在循环里判断一旦中点等于目标值就直接break或者retrurn。有些情况下这并没有什么问题。但是有的时候程序需要找到的是第一次出现的位置(大部分数字会重复的时候都是这样)。
这样就会导致答案错误。正确的做法是当一个目标值小于或等于中点时,将右点赋值为中间位置(为什么不是将等于条件放在目标值大于等于中点时,因为上面说了如果目标值大于中点值的时候将左值赋值为中点加一,这样会导致越过目标值)结束的条件就是左点小于右点。
代码
#include<bits/stdc++.h>
using namespace std;
int n,m;
int d[1000010];
int find(int value){//二分查找
int l=1,r=m;
while (l<r) //循环结束的条件
{
int mid=(l+r)/2;
if (d[mid]>=value) r=mid;
else l=mid+1;
}
if (d[l]==value) return l;
else return -1;
}
int main(){
cin>>m>>n;
for(int i=1;i<=m;i++){
cin>>d[i];
}
for(int i=0;i<n;i++){
int temp;
cin>>temp;
cout<<find(temp)<<' ';
}
}