车上最初有 capacity
个空座位。车 只能 向一个方向行驶(也就是说,不允许掉头或改变方向)
给定整数 capacity
和一个数组 trips
, trip[i] = [numPassengersi, fromi, toi]
表示第 i
次旅行有 numPassengersi
乘客,接他们和放他们的位置分别是 fromi
和 toi
。这些位置是从汽车的初始位置向东的公里数。
当且仅当你可以在所有给定的行程中接送所有乘客时,返回 true
,否则请返回 false
。
示例 1:
输入:trips = [[2,1,5],[3,3,7]], capacity = 4 输出:false
示例 2:
输入:trips = [[2,1,5],[3,3,7]], capacity = 5 输出:true
提示:
1 <= trips.length <= 1000
trips[i].length == 3
1 <= numPassengersi <= 100
0 <= fromi < toi <= 1000
1 <= capacity <= 10^5
提示 1
Sort the pickup and dropoff events by location, then process them in order.
解法:差分数组
差分数组知识点:
代码模版:
Java版:
// 你有一个长为 n 的数组 a,一开始所有元素均为 0。
// 给定一些区间操作,其中 queries[i] = [left, right, x],
// 你需要把子数组 a[left], a[left+1], ... a[right] 都加上 x。
// 返回所有操作执行完后的数组 a。
int[] solve(int n, int[][] queries) {
int[] diff = new int[n]; // 差分数组
for (int[] q : queries) {
int left = q[0], right = q[1], x = q[2];
diff[left] += x;
if (right + 1 < n) {
diff[right + 1] -= x;
}
}
for (int i = 1; i < n; i++) {
diff[i] += diff[i - 1]; // 直接在差分数组上复原数组 a
}
return diff;
}
Python版:
# 你有一个长为 n 的数组 a,一开始所有元素均为 0。
# 给定一些区间操作,其中 queries[i] = [left, right, x],
# 你需要把子数组 a[left], a[left+1], ... a[right] 都加上 x。
# 返回所有操作执行完后的数组 a。
def solve(n: int, queries: List[List[int]]) -> List[int]:
diff = [0] * n # 差分数组
for left, right, x in queries:
diff[left] += x
if right + 1 < n:
diff[right + 1] -= x
for i in range(1, n):
diff[i] += diff[i - 1] # 直接在差分数组上复原数组 a
return diff
本题思路:
对于本题,设 a[i] 表示车行驶到位置 i 时车上的人数。我们需要判断是否所有 a[i] 都不超过 capacity。
trips[i] 相当于把 a 中下标从 from 到 to − 1 的数都增加 numPassengers 。这正好可以用差分数组解决。
例如示例 1 对应的 d 数组,d[1]=2, d[5]=−2, d[3]=3, d[7]=−3,即
d=[0,2,0,3,0,−2,0,−3,⋯]
从左到右累加,得到
a=[0,2,2,5,5,3,3,0,⋯]
capacity=4,由于 max(a)=5>4,所以返回 false。
trips[i] 中乘客的起点是from,终点是to,但是到位置 to 时,乘客下车,所以乘客在车上的路程是[from, to - 1]。
因此,我们只需要 2 次操作即可完成对差分数组 diff 的修改:将 diff[from i] 的值增加 num i,并将 diff[to i] 的值减少 num i。这样就可以将处理 trips i的时间复杂度减少至 O(1)。
我们可以预先对数组 trips 进行一次遍历,得到所有 to i 中的最大值 toMax(即路程的最远终点),差分数组的最大下标只需要到 toMax。
Java版:
class Solution {
public boolean carPooling(int[][] trips, int capacity) {
int toMax = 0;
for (int i = 0; i < trips.length; i++) {
toMax = Math.max(toMax, trips[i][2]);
}
int[] diff = new int[toMax + 1];
for (int i = 0; i < trips.length; i++) {
int num = trips[i][0];
int from = trips[i][1];
int to = trips[i][2];
diff[from] += num;
diff[to] -= num;
}
for (int i = 0; i < toMax + 1; i++) {
if (i > 0) {
diff[i] += diff[i - 1];
}
if (diff[i] > capacity) {
return false;
}
}
return true;
}
}
Python版:
class Solution:
def carPooling(self, trips: List[List[int]], capacity: int) -> bool:
toMax = 0
n = len(trips)
for trip in trips:
toMax = max(toMax, trip[2])
diff = [0] * (toMax + 1)
for num, from_, to in trips:
diff[from_] += num
diff[to] -= num
diff = accumulate(diff)
return all(d <= capacity for d in diff)
复杂度分析
- 时间复杂度:O(n+t),其中 n 是数组 trips 的长度,t 是 toMax。
- 空间复杂度:O(t),即为差分数组 diff 需要使用的空间。
以上解法参考 1094. 拼车 - 力扣(LeetCode) 分享|【算法小课堂】差分数组(Python/Java/C++/Go/JS) - 力扣(LeetCode)