LeetCode LCP 74. 最强祝福力场

LCP 74. 最强祝福力场

小扣在探索丛林的过程中,无意间发现了传说中“落寞的黄金之都”。而在这片建筑废墟的地带中,小扣使用探测仪监测到了存在某种带有「祝福」效果的力场。 经过不断的勘测记录,小扣将所有力场的分布都记录了下来。forceField[i] = [x,y,side] 表示第 i 片力场将覆盖以坐标 (x,y) 为中心,边长为 side 的正方形区域。

若任意一点的 力场强度 等于覆盖该点的力场数量,请求出在这片地带中 力场强度 最强处的 力场强度

注意:

  • 力场范围的边缘同样被力场覆盖。

示例 1:

输入: forceField = [[0,0,1],[1,0,1]]

输出:2

解释:如图所示,(0.5, 0) 处力场强度最强为 2, (0.5,-0.5)处力场强度同样是 2。

示例 2:

输入: forceField = [[4,4,6],[7,5,3],[1,6,2],[5,6,3]]

输出:3

解释:如下图所示, forceField[0]、forceField[1]、forceField[3] 重叠的区域力场强度最大,返回 3

提示:

  • 1 <= forceField.length <= 100
  • forceField[i].length == 3
  • 0 <= forceField[i][0], forceField[i][1] <= 10^9
  • 1 <= forceField[i][2] <= 10^9

解法1:离散化 + 二维差分 + 二维前缀和

思路

  1. 统计所有左下和右上坐标,由于会出现 0.5,可以将坐标乘 2。
  2. 离散化横纵坐标。
  3. 二维差分。
  4. 用二维前缀和复原,计算最大值。

Java版:

class Solution {
    public int fieldOfGreatestBlessing(int[][] forceField) {
        Set<Long> x_set = new HashSet<>();
        Set<Long> y_set = new HashSet<>();
        // 1. 统计所有左下和右上坐标
        for (int[] f: forceField) {
            x_set.add((long) 2 * f[0] - f[2]);
            x_set.add((long) 2 * f[0] + f[2]);
            y_set.add((long) 2 * f[1] - f[2]);
            y_set.add((long) 2 * f[1] + f[2]);
        }
        // 2. 排序
        long[] xs = x_set.stream().mapToLong(Long::longValue).toArray();
        long[] ys = y_set.stream().mapToLong(Long::longValue).toArray(); 
        Arrays.sort(xs);
        Arrays.sort(ys);

        int m = ys.length;
        int n = xs.length;
        int[][] diff = new int[m + 2][n + 2];
        // 3. 二维差分
        for (int[] f: forceField) {
            long x = f[0];
            long y = f[1];
            long side = f[2];
            int c1 = Arrays.binarySearch(xs, 2 * x - side);
            int c2 = Arrays.binarySearch(xs, 2 * x + side);
            int r1 = Arrays.binarySearch(ys, 2 * y - side);
            int r2 = Arrays.binarySearch(ys, 2 * y + side);

            diff[r1 + 1][c1 + 1]++;
            diff[r1 + 1][c2 + 2]--;
            diff[r2 + 2][c1 + 1]--;
            diff[r2 + 2][c2 + 2]++;
        }
        
        // 4. 直接在 diff 上复原,计算最大值
        int ans = 0;
        for (int i = 1; i <= m; i++) {
            for (int j = 1; j <= n; j++) {
                diff[i][j] += diff[i][j - 1] + diff[i - 1][j] - diff[i - 1][j - 1];
                ans = Math.max(ans, diff[i][j]);
            }
        }
        return ans;
    }
}

Python3版:

二分查找 前提:列表有序!!!

bisect.bisect和bisect.bisect_right返回大于x的第一个下标(相当于C++中的upper_bound),bisect.bisect_left返回大于等于x的第一个下标(相当于C++中的lower_bound)。

class Solution:
    def fieldOfGreatestBlessing(self, forceField: List[List[int]]) -> int:
        x_set = set()
        y_set = set()
        for x, y, side in forceField:
            x_set.add(2 * x - side)
            x_set.add(2 * x + side)
            y_set.add(2 * y - side)
            y_set.add(2 * y + side)

        xs = sorted(x_set)
        ys = sorted(y_set)
        m = len(ys)
        n = len(xs)

        diff = [[0] * (n + 2) for _ in range(m + 2)]
        for x, y, side in forceField:
            c1 = bisect_left(xs, 2 * x - side) 
            c2 = bisect_left(xs, 2 * x + side) 
            r1 = bisect_left(ys, 2 * y - side)
            r2 = bisect_left(ys, 2 * y + side) 

            diff[r1 + 1][c1 + 1] += 1
            diff[r1 + 1][c2 + 2] -= 1
            diff[r2 + 2][c1 + 1] -= 1
            diff[r2 + 2][c2 + 2] += 1

        ans = 0 
        for i in range(1, m + 1):
            for j in range(1, n + 1):
                diff[i][j] += diff[i][j - 1] + diff[i - 1][j] - diff[i - 1][j - 1]
                ans = max(ans, diff[i][j])
        return ans

复杂度分析

  • 时间复杂度:O(n^2),其中 n 为 forceField 的长度。
  • 空间复杂度:O(n^2)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值