你现在是一场采用特殊赛制棒球比赛的记录员。这场比赛由若干回合组成,过去几回合的得分可能会影响以后几回合的得分。
比赛开始时,记录是空白的。你会得到一个记录操作的字符串列表 ops
,其中 ops[i]
是你需要记录的第 i
项操作,ops
遵循下述规则:
- 整数
x
- 表示本回合新获得分数x
"+"
- 表示本回合新获得的得分是前两次得分的总和。题目数据保证记录此操作时前面总是存在两个有效的分数。"D"
- 表示本回合新获得的得分是前一次得分的两倍。题目数据保证记录此操作时前面总是存在一个有效的分数。"C"
- 表示前一次得分无效,将其从记录中移除。题目数据保证记录此操作时前面总是存在一个有效的分数。
请你返回记录中所有得分的总和。
示例 1:
输入:ops = ["5","2","C","D","+"] 输出:30 解释: "5" - 记录加 5 ,记录现在是 [5] "2" - 记录加 2 ,记录现在是 [5, 2] "C" - 使前一次得分的记录无效并将其移除,记录现在是 [5]. "D" - 记录加 2 * 5 = 10 ,记录现在是 [5, 10]. "+" - 记录加 5 + 10 = 15 ,记录现在是 [5, 10, 15]. 所有得分的总和 5 + 10 + 15 = 30
示例 2:
输入:ops = ["5","-2","4","C","D","9","+","+"] 输出:27 解释: "5" - 记录加 5 ,记录现在是 [5] "-2" - 记录加 -2 ,记录现在是 [5, -2] "4" - 记录加 4 ,记录现在是 [5, -2, 4] "C" - 使前一次得分的记录无效并将其移除,记录现在是 [5, -2] "D" - 记录加 2 * -2 = -4 ,记录现在是 [5, -2, -4] "9" - 记录加 9 ,记录现在是 [5, -2, -4, 9] "+" - 记录加 -4 + 9 = 5 ,记录现在是 [5, -2, -4, 9, 5] "+" - 记录加 9 + 5 = 14 ,记录现在是 [5, -2, -4, 9, 5, 14] 所有得分的总和 5 + -2 + -4 + 9 + 5 + 14 = 27
示例 3:
输入:ops = ["1"] 输出:1
提示:
1 <= ops.length <= 1000
ops[i]
为"C"
、"D"
、"+"
,或者一个表示整数的字符串。整数范围是[-3 * 10^4, 3 * 10^4]
- 对于
"+"
操作,题目数据保证记录此操作时前面总是存在两个有效的分数 - 对于
"C"
和"D"
操作,题目数据保证记录此操作时前面总是存在一个有效的分数
解法1:模拟
使用变长数组对栈进行模拟。
- 如果操作是 +,那么访问数组的后两个得分,将两个得分之和加到总得分,并且将两个得分之和入栈。
- 如果操作是 D,那么访问数组的最后一个得分,将得分乘以 2 加到总得分,并且将得分乘以 2 入栈。
- 如果操作是 C,那么访问数组的最后一个得分,将总得分减去该得分,并且将该得分出栈。
- 如果操作是整数,那么将该整数加到总得分,并且将该整数入栈。
Java版:
class Solution {
public int calPoints(String[] operations) {
List<Integer> score = new ArrayList<>();
for (String s : operations) {
switch (s) {
case "C":
score.remove(score.size() - 1);
break;
case "D":
score.add(score.get(score.size() - 1) * 2);
break;
case "+":
score.add(score.get(score.size() - 1) + score.get(score.size() - 2));
break;
default:
score.add(Integer.valueOf(s));
}
}
int ans = 0;
for (Integer a : score) {
ans += a;
}
return ans;
}
}
Python3版:
class Solution:
def calPoints(self, operations: List[str]) -> int:
score = []
for s in operations:
match s:
case "C":
score.pop()
case "D":
score.append(score[-1] * 2)
case "+":
score.append(score[-1] + score[-2])
case _:
score.append(int(s))
return sum(score)
复杂度分析
- 时间复杂度:O(n),其中 n 为数组 operations 的大小。遍历整个 operations 需要 O(n)。
- 空间复杂度:O(n)。变长数组最多保存 O(n) 个元素。