24考研数据结构-第四章:串

第四章:串

4.1串的定义和实现

4.1.1串的定义

  • 串: 零个或多个字符组成的有限序列,如 S = ‘iPhone 11 Pro Max?’;

  • 在这里插入图片描述

  • 串名:S是串名;

  • 串的长度:串中字符的个数n;

  • 空串:n=0时的串;

  • 子串:串中任意多个连续的字符组成的子序列称为该串的子串;

  • 主串:包含子串的串

  • 字符在主串中的位置:某个字符在串中的序号(从1开始)

  • 子串在主串中的位置:子串的第一个字符在主串中的位置;

空串 V.S 空格串:

  • M = ‘’ 是空串;
  • N = ’ ’ 是空格串;

串 V.S 线性表:

  • 串是特殊的线性表,数据元素之间呈线性关系(逻辑结构相似);
  • 串的数据对象限定为字符集:中文字符、英文字符、数字字符、标点字符…
  • 串的基本操作,如增删改除通常以子串为操作对象

4.1.2串的基本操作

在这里插入图片描述
StrCompare(S, T) 串的比较操作,参照英文词典排序方式;若S > T,返回值>0; S = T,返回值=0 (需要两个串完全相同) ; S < T,返回值<0;
在这里插入图片描述

字符集编码

在这里插入图片描述

4.1.3串的存储结构

1. 定长顺序存储表示

#define MAXLEN 255   //预定义最大串长为255

typedef struct{
    char ch[MAXLEN];   //静态数组实现(定长顺序存储)
                       //每个分量存储一个字符
                       //每个char字符占1B
    int length;        //串的实际长度
}SString;

串长的两种表示法:

  • 方案一:用一个额外的变量length来存放串的长度(保留ch[0]);

  • 方案二:用ch[0]充当length;
    优点:字符的位序和数组下标相同
    缺点: 字符串长度0-2^8-1

  • 方案三:没有length变量,以字符’\0’表示结尾(对应ASCII码的0);
    缺点:需要从头到尾遍历

  • 方案四——最终使用方案ch[0]废弃不用声明int型变量length来存放串的长度(方案一与方案二的结合)

基本操作实现(基于方案四)
#define MAXLEN 255

typedef struct{
    char ch[MAXLEN];   
    int length;       
}SString;

// 1. 求子串
bool SubString(SString &Sub, SString S, int pos, int len){
    //子串范围越界
    if (pos+len-1 > S.length) //pos+len-1是因为这样子是最后一个元素的位置
        return false;  //如下边的i<pos+len,就是i最大值是pos+len-1
    
    for (int i=pos; i<pos+len; i++)
        Sub.cn[i-pos+1] = S.ch[i];
    
    Sub.length = len;

    return true;
}

// 2. 比较两个串的大小
int StrCompare(SString S, SString T){
    for (int i; i<S.length && i<T.length; i++){
        if(S.ch[i] != T.ch[i])
            return S.ch[i] - T.ch[i];
    }
    //扫描过的所有字符都相同,则长度长的串更大
    return S.length - T.length;
}

// 3. 定位操作
int Index(SString S, SString T){
    int i=1;
    n = StrLength(S);
    m = StrLength(T);
    SString sub;        //用于暂存子串

    while(i<=n-m+1){  //n-m+1是最后一个能取到长m的字串的位置,所以可以等于
        SubString(Sub,S,i,m);
        if(StrCompare(Sub,T)!=0)
            ++i;
        else 
            return i;    // 返回子串在主串中的位置
    }
    return 0;            //S中不存在与T相等的子串
}


2. 堆分配存储表示

堆存储结构的特点:仍以一组空间足够大的、地址连续的存储单元依次存放字符序列,但它们的存储空间是在程序执行过程种动态分配的 。
通常,C语言提供的串类型就是以这种存储方式实现的。由动态分配函数malloc()分配一块实际串长所需要的存储空间(“堆”),如果分配成功,则返回此空间的起始地址,作为串的基址。由free()释放串不再需要的空间

堆存储结构的优点堆存储结构既有顺序存储结构的特点,处理(随机取子串)方便,操作中对串长又没有任何限制,更显灵活,因此在串处理的应用程序中常被采用。

//动态数组实现
typedef struct{
    char *ch;           //按串长分配存储区,ch指向串的基地址
    int length;         //串的长度
}HString;

HString S;
S.ch = (char *) malloc(MAXLINE * sizeof(char)); //基地址指针指向连续空间的起始位置
                                                //malloc()需要手动free()
S.length;


3. 串的链式存储

typedef struct StringNode{
    char ch;           //每个结点存1个字符
    struct StringNode *next;
}StringNode, * String;


问题:存储密度低,每个字符1B,每个指针4B(32位的机器上)
解决方案:每一个链表的结点存储多个字符——每个结点称为块——块链结构

typedef struct StringNode{
    char ch[4];           //每个结点存多个个字符
    struct StringNode *next;
}StringNode, * String;


结合链表思考优缺点
  • 存储分配角度:链式存储的字符串无需占用连续空间,存储空间分配更灵活
  • 操作角度:若要在字符串中插入或删除某些字符,则顺序存储方式需要移动大量字符,而链式存储不用;
  • 若要按位序查找字符,则顺序存储支持随机访问,而链式存储只支持顺序访

知识回顾

在这里插入图片描述

4.2串的模式匹配

模式匹配:子串的定位操作称为串的模式,它求的是子串(常称模式串)在主串中的位置。
在这里插入图片描述

4.2.1朴素模式匹配算法

n-m+1主串中能有的串个数

int Index(SString S, SString T){
    int i=1;                //扫描主串S
    int j=1;                //扫描模式串T
    while(i<=S.length && j<=T.length){
        if(S.ch[i] == T.ch[j]){
            ++i;
            ++j;             //继续比较后继字符
        }
        else{
            i = i-j+2;  //回到这次匹配的第一个位置之前+1得到匹配的第一个位置
            //再+1才能得到下一次匹配的第一个位置
            j=1;             //指针后退重新开始匹配
        }
    }
    if(j>T.length)  //匹配成功,返回第一个字符位置
        return i-T.length;
    else
        return 0;
}
时间复杂度分析:

主串长度为n,模式串长度为m
最多比较n-m+1个子串

  • 最坏时间复杂度 = O(nm)
    每个子串都要对比m个字符(对比到最后一个字符才匹配不上),共要对比n-m+1个子串,复杂度 = O((n-m+1)m) = O(nm - m^2 + m) = O(nm)
    PS:大多数时候,n>>m
  • 比较好时间复杂度 = O(n)
    每个子串的第一个字符就匹配失败,共要对比n-m+1个子串,复杂度 = O(n-m+1) = O(n)
    匹配一次就匹配成功:O(m)

4.2.2改进的模式匹配算法——KMP算法

不匹配的字符之前,一定是和模式串一致的;
根据模式串T,求出next数组(只与模式串有关,与主串无关),利用next数组进行匹配,当匹配失败时,主串的指针 i 不再回溯!
next数组是根据子串求出来的,当前面的字符串已知时如果有重复的,从当前的字符匹配即可。

1. 求next数组

  • 作用:当模式串的第j个字符失配时,从模式串的第next[j]继续往后匹配;
  • 对于任何模式串,当第1个字符不匹配时,只能匹配下一个子串,因此,next[1] = 0——表示模式串应右移一位,主串当前指针后移一位,再和模式串的第一字符进行比较;
  • 对于任何模式串,当第2个字符不匹配时,应尝试匹配模式串的第一个字符,因此,next[2] = 1;

在这里插入图片描述
分界线后的第一个元素的位序就是next[j]的值

2. 利用next数组进行模式匹配

int Index_KMP(SString S, SString T, int next[]){
    int i=1;     //主串
    int j=1;     //模式串
    while(i<S.length && j<=T.length){
        if(j==0 || S.ch[i]==T.ch[j]){      //第一个元素匹配失败时
            ++j;
            ++i;         //继续比较后继字符
        }
        else
            j=next[j]   //模式串向右移动
    }
    if(j>T.length)
        return i-T.length; //匹配成功
}


在这里插入图片描述

3. 时间复杂度分析

  • 求next数组时间复杂度 = O(m)
  • 模式匹配过程最坏时间复杂度 = O(n)
  • KMP算法的最坏时间复杂度 = O(m+n)

4.2.3 next数组的优化思路nextval,优化KMP

在这里插入图片描述
如果next[j]的值对应的模式串的值相等,则说明就算跳转到这个位置也一样匹配失败,所以nextval[j]的值就是next[j]的值减一,再判断还会不会一样。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VengaZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值