- 博客(4)
- 收藏
- 关注
原创 神经网络与深度学习课程总结(四)
遗忘门:值为0,什么都记不住(0通过);值为1,全记住(全部通过)总结:参数量是RNN的4倍,输入输出和RNN 相同。输入门:i𝑡确定传送带𝐶𝑡的那些值被更新。二、长短期记忆网络(LSTM)更新传送带:计算传送带更新值。一、门控循环单元(GRU)
2024-05-20 21:30:26 203 1
原创 神经网络与深度学习课程总结(三)
每个bb有5个分量,分别是物体的中心位置(𝑦,𝑧)和它的高(ℎ) 和宽 (𝑥) ,以及这次预测的置信度。其中𝑁代表测试集中所有图片的个数,𝑃(𝑘)表示在能识别出𝑘个图片的时候Precision的值,而 Δ𝑟(𝑘)则表示识别图片个数从𝑘 − 1变化到𝑘时(通过调整阈值)Recall值的变化情况。我们有 t^2 个框,每个框的bb个数为𝐶,分类器可以识别出𝐷种不同的物体,那么所有整个ground truth的长度为𝑇 × 𝑇 × (𝐶 × 5 + 𝐷)IOU是预测的bb和真实的物体位置的交并比。
2024-04-22 15:05:59 790 1
原创 神经网络与深度学习(二)
也就是说它是对一个图像进行的第一个运算处理。然后执行 K 次模型训练和验证,每次在 K−1 个子集上进行训练, 并在剩余的一个子集(在该轮中没有用于训练的子集)上进行验证。参数自适应变化:具有较大偏导的参数相应有一个较大的学习率,而具有小偏导的参数则对应一个较小的学习率,具体来说,每个参数的学习率会缩放各参数反比于其历史梯度平方值总和的平方根。Adam 算法:Adam 在 RMSProp 方法的基础上更进一步:除了加入平方的指数衰减平均(𝑠)外, 还保留了历史梯度的指数衰减平均(𝑡),相当于动量。
2024-04-13 15:58:36 666
原创 神经网络与深度学习课程学习总结(一)
网络结构 网络结构:u(或x )、y是网络的输入、输出向量,神经元用节点表示,网络由输入层、隐层和输出层节点组成,隐层可一层,也可多层(图中是单隐层),前层至后层节点通过权联接。② 反向传播是将误差(样本输出与网络输出之差)按原联接通路反向计算,由梯度下降法调整各层节点的权值和阈值,使误差减小。① 正向传播是输入信号从输入层经隐层,传向输出层,若输出层得到了期望的输出,则学习算法结束;多层前馈网络的反向传播 (BP)学习算法,简称BP 算法,它是梯度下降法在多层前馈网中的应用。若J
2024-03-31 17:03:18 636
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人