【ComfyUI】电商模特场景高度融合工作流(在线体验)

0****1

介绍

之前我们分享过基于Redux的背景替换,那种是保持人物不变,背景换掉,不过那种方式打光效果不是很好,而且背景是风格迁移,不能很好固定,有时候我们需要固定一个参考的背景,这时候这套工作流就不适合了。

今天我们换个思路,指定一个场景,把整个人都融入,完全重新生成,这种的优势是模特可以和场景很好的融合,很适合电商场景,就是已经有模特白底图了,要合成到一个很好的场景中。

核心还是利用Fill+Redux,重点是思路的拆解。

下面是跑的几张效果图,还是很不错的

左一是模特图,中间是参考图(要涂抹遮罩),右边是最终的迁移图,把整个人迁移到新的图上。

这样背景就是可控的,符合电商场景要求。

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

02

工作流说明

我们先来看下整体工作流

工作流一共分5个模块,核心用到的就2个。

•图片遮罩处理及拼接

•Fill+Redux重绘迁移

•脸部修复

•SD放大

•成品图拼接

用户处理逻辑

1:上传模特白底图

2:上传要指定的场景图,手动涂抹要替换的区域(这个区域就是给模特预留的空间,融图进来)

3:默认修脸和SD放大关闭,先跑图,抽出没问题的,再看情况去开启

下面是按业务流程来介绍工作流

2.1 图片遮罩处理及拼接

原理还是利用拼图的模式,把图片和遮罩都拼起来,这样提供给后期重绘的时候使用,拼接的图到时候重绘的时候一致性会大大提高。

这里参考图的遮罩需要自己手动涂抹传入,其他不需要调整,图片最长边我设置了1440,可以自己适当调整。

2.2 Fill+Redux重绘迁移

这里就是利用Fill+Redux的三重迁移能力,生成后做裁剪,把右边区域的图片裁剪出来。

固定这样不需要额外调整节点了。

2.3 脸部修复

该模块简单利用了ReActor的恢复面部模块,做适当的高清化,默认情况下不开启。

替代方案是使用Pulid换脸,如果本身生成的挺清晰了,就不要用这个模块了。

我测试下来发现修复后脸部变清晰了, 但是呢和原图就有点差异了。

所以按需自己调整。

2.4 高清SD放大

这里放大方案选择SD放大,如果原图足够高清,也不需要开启,放大倍数自己调整,默认设置1.5倍。

提示词可写可不写,写的话可以更精细一些。

03

在线体验

憋了几天,今天终于上线了我的仙宫云镜像,大家如果没有本地 ComfyUI 环境,或者本地显卡配置低于 16G 的,可以使用我部署的仙宫云镜像,今天分享的工作流已经内置好了,可直接加载使用。后续分享的工作流都会更像到镜像中,方便大学学习。

云平台镜像地址:

新用户通过邀请码注册,总共可获得 8 元奖励,体验 4 个小时的 4090 作图时长。

04

总结

以上就是这个电商模特场景融合工作流了,效果很不错,大家可以试试看。

技术的迭代是飞快的,要关注最新的消息才不会掉队。

关注我,每天分享最新的ComfyUI技术前沿。

本篇中的工作流和模型打包好了,想要的扫下图获取吧。

工作流获取

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 下载 Sentinel-2 卫星影像数据的方法 #### 使用在线平台下载 对于希望快速获取少量影像的情况,可以选择通过 Copernicus Open Access Hub 或者其他官方提供的在线平台来查找并下载所需的数据。完成账号注册登录之后,在平台上搜索目标区域内的 Sentinel-2 影像产品,浏览预览图确认质量无误后即可按照指引操作进行下载[^1]。 #### 利用 Google Earth Engine (GEE) 批量处理与导出 当面对较大规模的数据需求时,则可借助于 GEE 平台的强大功能实现自动化流程。首先定义感兴趣区 `aoi` ,接着利用该地理围栏作为筛选条件查询符合条件的历史存档记录,并最终设置参数提交任务至云端执行裁剪、拼接等一系列预处理动作直至获得满足项目要求的结果集。具体步骤如下所示: ```python import ee ee.Initialize() # 定义研究区域 area_of_interest = 'projects/earthengine-public/assets/<your_area>' aoi = ee.FeatureCollection(area_of_interest) # 查询可用图像集合 image_collection = ee.ImageCollection('COPERNICUS/S2') \ .filterBounds(aoi)\ .filterDate('YYYY-MM-DD', 'YYYY-MM-DD') task = ee.batch.Export.image.toDrive( image=image.select(['B.*']).median(), description='export_s2', scale=10, region=aoi.geometry().bounds().getInfo()['coordinates'], fileFormat='GeoTIFF' ) task.start() ``` 上述代码片段展示了如何基于给定的时间区间以及地理位置过滤器选取合适的遥感图片序列,并将其转换成易于本地分析使用的 GeoTiff 文件格式保存到个人谷歌云盘账户下以便后续调用[^2]。 #### 从 AWS S3 存储桶直接拉取公开资源 考虑到部分科研工作者可能更倾向于采用命令行工具或者编程接口的方式访问原始 L1C/L2A 级别的底片素材,此时可以直接连接至欧洲空间局维护下的公共对象存储服务——即亚马逊 Simple Storage Service (Amazon S3),并通过指定正确的 endpoint 地址确保路径解析正确无误。例如使用 wget 工具可以从特定 URL 处高效地抓取文件包: ```bash wget --no-check-certificate https://eodata.dataspace.copernicus.eu/some/path/to/file.zip -O ./localfile.zip ``` 这里需要注意的是应当保持默认的 s3 endpoint 不变,而仅修改主机名为指向 ESA 提供的服务地址以适应实际应用场景中的变化[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值