【ComfyUI工作流】 Flux_简单使用

一、Flux模型

1、FLUX.1 Dev fp16

  • 本地跑Flux最优质的模型

  • 不支持商用

  • 生图极慢

  • 建议16GB显存以上使用

2、FLUX.1 Schnell fp16

  • 与其他Flux效果完全不同

  • Apache2.0 license许可下支持商用

  • 生图速度比原模快

  • 支持4步生图(图片需要更多细节,可提高到8-10质量会更好)

  • 建议16GB显存以上使用

3、FLUX.1 Dev fp8

  • 非常推荐使用

  • 效果仅次于FLUX1 Dev fp16原模

  • 生图速度极快

  • 6-8GB显存可使用

4、FLUX.1 Schnell fp8

  • 与其他Flux效果完全不同

  • Apache2.0 license许可下支持商用

  • 生图速度比原模快

  • 支持4步生图

  • 6-8GB显存可使用

lib上可下载,地址:

https://www.liblib.art/modelinfo/de40ff893256477bbb1bb54e3d8d9df6?from=search&versionUuid=7b3004f6dcb94298b19a1b3b38430c13

没有会员的我帮你下载好了,扫下图领取:

模型存放路径:(我下载我可以承受的显存6-12GB)

models-unet

上面的模型是需要VAE的哈!!!

-

低显存可使用版本

5、FLUX1.0 dev NF4

  • 整合vae和clip

  • 尽可能保留细节的基础上,最大程度还原FLUX原模的效果

  • 速度提升4倍

  • 显存要求降低4GB可使用

lib上可下载,地址:

https://www.liblib.art/modelinfo/0175a2f9826d4c3a9335380940f87f58?from=search&versionUuid=54fb76b871364e2b966b4d6ad21655d0

没有会员的我帮你下载好了,扫下图领取:

模型存放路径:

models-checkpoints

6、FLUX.1 GGUF版本

根据显存大小下载最接近显存数字的模型大小

如:6GB选择Q3_K_S或Q4_0

下载地址

https://huggingface.co/city96/FLUX.1-dev-gguf/tree/main(这个翻墙就能下,好使!)

模型存放路径:

models-unet

二、FLUX clip模型

下载地址

https://huggingface.co/comfyanonymous/flux_text_encoders/tree/main

模型存放路径:

models-clip

三、Flux节点安装

1、GGUF,需手动安装

github地址

https://github.com/city96/ComfyUI-GGUF

2、NF4,需手动安装

github地址

https://github.com/comfyanonymous/ComfyUI_bitsandbytes_NF4

3、xlabs,需手动安装

① xlabs,为UNA使用FLUX controlnet的一个节点包

github地址

https://github.com/XLabs-AI/x-flux-comfyui

存放路径:

ComfyUI-custom_nodes

② xlabs针对FLux的lora

comfy converted可直接放入根目录-models-loras

不带comfy converte,放入根目录-models-xlabs-loras才能被识别

下载地址

https://huggingface.co/XLabs-AI/flux-lora-collection/tree/main

存放路径:

Models-xlabs-loras

4、xlabs针对FLux的controlnet

支持最好的controlnet模型,hed/depth/canny,直接下v3版本

下载地址:
https://huggingface.co/XLabs-AI/flux-controlnet-collections/tree/main

存放路径:

Models-xlabs-controlnet

四、FLUX使用

1、节点说明

① UNET加载器(Load Diffusion Model)

用来识别并加载FLUX模型的

剪枝类型(weight dtype),默认default为fp16,fp8就选fp8的

② 双CLIP加载器(DualCLIPLoader)

CLIP1,可选择t5xxl fp8或者t5xxl fp16都可以

CLIP2,选择clip_l

以上:CLIP1和CLIP2可以相互交换的

③ VAE加载器(Load VAE)

④ FLux采样器(FLux Sampler Parameters)

该节点来自:ComfyUI essentials

2、FLUX基础文生图工作流

FLUX模型不需要负面提示词

① 采样器+调度器(目前需要手动输入)

  • 官方推荐,euler + simple

  • 可尝试,euler + beta / uni_pc_bh2 + simple / ipdmn + simple

  • euler + beta 与 euler + simple 区别,在于beta对光影的捕捉更自然、整体画面更明亮

② guidance(CFG中的G,控制提示词相关性)

  • 官方默认3.5,建议2-5

  • guidance=2,艺术发挥空间更大,艺术效果更浓

  • guidance>5,画面的对比度会更强烈

  • 教程中说guidance>3,画面偏写实,guidance<3,画面偏动漫(我怎么是反的ε=(´ο`*)))唉)

  • 做写实场景,建议2-3

  • 做非写实场景,建议3-4.5

-

FLUX工作流设置对比(没用过,记录下设置)

① FLUX1 Dev原模

② FLUX1 Schnell

③ FLUX1 fp8

④ FLUX1 GGUF

⑤ FLUX1 NF4

3、搭配lora

注意:NF4据说暂不支持lora

用官方的lora(官方的不好使),使用FLux加载LoRA,如下:

本地节点没连错,不知道是不是配置的问题,加了lora全是噪点,从这里就直接使用lib线上

用普通的lora加载器就可以,如下所示:

4、增加高清放大

使用节点Ultimate SD Upscale的SD放大 + 放大模型加载器

需要加载个空的负向提示词

SD放大设置:

CFG:1

降噪:0.1-0.2(太高就与原图不像啦)

-

用NF4搭建的高清放大,如下:

5、FLUX基础图生图工作流

懒得写提示词,加了个Joy Caption 2提示词反推

6、局部重绘

增加节点:

  • 差异扩散(differential diffusion),该节点可逐步改善图像质量,并生成细节更丰富的功能,在做局部重绘时,可以拥有更好的效果。

  • 遮罩高斯模糊(gaussian blur mask),该节点专门用来优化蒙版边缘衔接的。

  • 内部模型条件(inpaint model conditioning),该节点专门做局部重绘时用到的。

增加一个空的负向提示词

删除VAE编码(因为内部模型条件中已有)

由于lib直接在图像上涂抹遮罩一直不好使,增加一个segment_anything语义分割,如下所示:

7、加载controlnet

Canny

Depth

Hed

综上,flux的controlnet这三个效果,Canny、Depth可以凑合着用用

走完一遍FLUX基础使用,终于有个概念啦

关于AI绘画技术储备

学好 AI绘画 不论是就业还是做副业赚钱都不错,但要学会 AI绘画 还是要有一个学习规划。最后大家分享一份全套的 AI绘画 学习资料,给那些想学习 AI绘画 的小伙伴们一点帮助!

对于0基础小白入门:

如果你是零基础小白,想快速入门AI绘画是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以找到适合自己的学习方案

包括:stable diffusion安装包、stable diffusion0基础入门全套PDF,视频学习教程。带你从零基础系统性的学好AI绘画!

零基础AI绘画学习资源介绍

👉stable diffusion新手0基础入门PDF👈

(全套教程文末领取哈)
在这里插入图片描述

👉AI绘画必备工具👈

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉AI绘画基础+速成+进阶使用教程👈

观看零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

温馨提示:篇幅有限,已打包文件夹,获取方式在:文末

👉12000+AI关键词大合集👈

在这里插入图片描述

这份完整版的AI绘画全套学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
### 关于 FLUX1-dev-fp8 的技术文档及相关信息 FLUX1-dev-fp8 是一款基于 FP8 浮点精度优化的深度学习模型,在特定应用场景下提供了显著的性能提升[^1]。该模型不仅继承了 FLUX 系列产品的优势特性,还针对开发者的需求进行了多项改进。 #### 社区资源与支持 对于寻求更多关于 FLUX1-dev-fp8 技术细节的支持和技术交流机会而言,活跃的技术社区是一个宝贵的资源库。InstantX/FLUX.1-dev-Controlnet-Union 和 Shakker-Labs 维护的相关 GitHub 仓库中包含了大量由用户贡献的内容以及官方发布的资料,涵盖了从基础入门到高级应用的各种教程和案例分享[^3]。 #### 官方文档的重要性 考虑到不同版本间可能存在功能性差异及随时间推移而产生的操作流程变更,查阅最新版官方文档显得尤为重要。这不仅能确保使用者掌握最前沿的功能特性,还能有效规避因过时信息而导致的操作失误[^4]。 ```python import requests def fetch_latest_docs(model_name="FLUX1-dev-fp8"): url = f"https://docs.example.com/{model_name}/latest" response = requests.get(url) if response.status_code == 200: return response.text else: raise Exception(f"Failed to retrieve documentation for {model_name}") print(fetch_latest_docs()) ``` 此段 Python 代码展示了如何通过 API 获取指定型号(此处为 FLUX1-dev-fp8)最新的在线文档内容。请注意替换 `https://docs.example.com` 为你所关注的具体项目站点地址。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值