这里写目录标题
-
- 题目描述
- 源数据集
- 数据分析
题目描述
美国联邦选举委员会公布了有关政治运动贡献的数据。这些数据包括捐赠者姓名、职业和雇主、地址和缴费金额。你可以尝试做一下的分析:
按职业和雇主的捐赠统计
按捐赠金额统计
按州进行统计
源数据集
点此获得该系列1-4数据
提取码:if5a
数据分析
加载数据
fec = pd.read_csv("datasets/fec/P00000001-ALL.csv", low_memory=False)
fec.info()
fec.iloc[123456]
unique_cands = fec["cand_nm"].unique()
unique_cands
unique_cands[2]

定义一个包含所有选举委员的大字典
fec[“cand_nm”][123456:123461]:提取"dataframe"中"cand_nm"列索引为123456到123460的行的值。
fec[“cand_nm”][123456:123461].map(parties):对刚才提取的值进行映射操作,使用名为"parties"的函数。
fec[“party”] = fec[“cand_nm”].map(parties):将"cand_nm"列映射后的结果赋值给新的列"party"。
fec[“party”].value_counts():统计"party"列中每个值出现的次数。
parties = {
"Bachmann, Michelle": "Republican",
"Cain, Herman": "Republican",
"Gingrich, Newt": "Republican",
"Huntsman, Jon": "Republican",
"Johnson, Gary Earl": "Republican",
"McCotter, Thaddeus G": "Republican",
"Obama, Barack": "Democrat",
"Paul, Ron": "Republican",
"Pawlenty, Timothy": "Republican",
"Perry, Rick": "Republican",
"Roemer, Charles E. 'Buddy' III": "Republican",
"Romney, Mitt": "Republican",
"Santorum, Rick": "Republican"}
fec["cand_nm"][123456

最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



