《利用Python进行数据分析》初阶例题分析-4:2012年联邦选举委员会数据库

这里写目录标题

    • 题目描述
    • 源数据集
    • 数据分析

题目描述

美国联邦选举委员会公布了有关政治运动贡献的数据。这些数据包括捐赠者姓名、职业和雇主、地址和缴费金额。你可以尝试做一下的分析:
按职业和雇主的捐赠统计
按捐赠金额统计
按州进行统计

源数据集

点此获得该系列1-4数据
提取码:if5a

数据分析

加载数据

fec = pd.read_csv("datasets/fec/P00000001-ALL.csv", low_memory=False)
fec.info()
fec.iloc[123456]
unique_cands = fec["cand_nm"].unique()
unique_cands
unique_cands[2]

在这里插入图片描述
定义一个包含所有选举委员的大字典
fec[“cand_nm”][123456:123461]:提取"dataframe"中"cand_nm"列索引为123456到123460的行的值。

fec[“cand_nm”][123456:123461].map(parties):对刚才提取的值进行映射操作,使用名为"parties"的函数。

fec[“party”] = fec[“cand_nm”].map(parties):将"cand_nm"列映射后的结果赋值给新的列"party"。

fec[“party”].value_counts():统计"party"列中每个值出现的次数。

parties = {
   "Bachmann, Michelle": "Republican",
           "Cain, Herman": "Republican",
           "Gingrich, Newt": "Republican",
           "Huntsman, Jon": "Republican",
           "Johnson, Gary Earl": "Republican",
           "McCotter, Thaddeus G": "Republican",
           "Obama, Barack": "Democrat",
           "Paul, Ron": "Republican",
           "Pawlenty, Timothy": "Republican",
           "Perry, Rick": "Republican",
           "Roemer, Charles E. 'Buddy' III": "Republican",
           "Romney, Mitt": "Republican",
           "Santorum, Rick": "Republican"}
fec["cand_nm"][123456
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值