前端开发想了解机器学习?用一台Mac就可以,前端开发者跳槽必备

这篇博客介绍了如何在Mac环境下,利用少量样本数据,通过Keras和TensorFlow训练一个简单的卷积神经网络(CNN)模型。首先,安装相关依赖,如keras和tensorflow,然后进行数据预处理、模型构建、训练和评估。最后,展示了如何开发和部署模型服务,以便于实际应用中通过API进行预测。
摘要由CSDN通过智能技术生成

$ conda list

可以看到 Anaconda 中有很多已经安装好的包,如果有使用到这些包的就不需要再安装了,python 环境也装好了。

**注意:**如果安装失败,重新安装,在提示安装在哪里时,选择「更改安装位置」,安装位置选择其他地方不是用默认的,安装在哪里自己选择,可以放在「应用程序」下。

 安装相关依赖

anaconda 中没有  keras、tensorflow 和  opencv-python, 需要单独安装。

$ pip install keras$ pip install tensorflow$ pip install opencv-python

样本准备



这里只准备了 4 个分类:button、keyboard、searchbar、switch, 每个分类 200 个左右的样本。

模型训练



 开发训练逻辑

新建一个项目 train-project, 文件结构如下:

.├── CNN_net.py├── dataset├── nn_train.py└── utils_paths.py

入口文件代码如下,这里的逻辑是将准备好的样本输入给图像分类算法 SimpleVGGNet, 并设置一些训练参数,例如学习率、Epoch、Batch Size, 然后执行这段训练逻辑,最终得到一个模型文件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值