$ conda list
可以看到 Anaconda 中有很多已经安装好的包,如果有使用到这些包的就不需要再安装了,python 环境也装好了。
**注意:**如果安装失败,重新安装,在提示安装在哪里时,选择「更改安装位置」,安装位置选择其他地方不是用默认的,安装在哪里自己选择,可以放在「应用程序」下。
▐ 安装相关依赖
anaconda 中没有 keras、tensorflow 和 opencv-python, 需要单独安装。
$ pip install keras$ pip install tensorflow$ pip install opencv-python
样本准备
这里只准备了 4 个分类:button、keyboard、searchbar、switch, 每个分类 200 个左右的样本。
模型训练
▐ 开发训练逻辑
新建一个项目 train-project, 文件结构如下:
.├── CNN_net.py├── dataset├── nn_train.py└── utils_paths.py
入口文件代码如下,这里的逻辑是将准备好的样本输入给图像分类算法 SimpleVGGNet, 并设置一些训练参数,例如学习率、Epoch、Batch Size, 然后执行这段训练逻辑,最终得到一个模型文件。