先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新Web前端全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上前端开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024c (备注前端)
正文
所以我决定用一些AI 自动监测的一些算法,
让我们实现自动锁头的脚本。(PS:正规游戏,小心封号)
=============================================================================
这里就不在过多解释了,就是锁定敌人并自动射击,
我们可以使用生活中的一些案例来实现我们这个小测试,例如,高速的违规拍照、行人流量自动检测系统,还有安全识别检测,如果晚上有陌生人考经,则将灯对准那个人或打开警报系统。
然后我使用一些算法为我的模型生成训练数据以准确检测敌人。
测试环境:
-
i7–7700k CPU 和 Nvidia 1080TI GPU
-
操作系统 Windows 10
-
CUDA 10.1
-
cuDNN v7.6.5
-
TensorRT-6.0.1.5
-
Tensorflow-GPU 2.3.1
这里建议在Ubuntu系统测试,因为在 Ubuntu 上运行 TensorRT 比在 Windows 10 上运行要容易得多(后面才发现的)
首先必须安装TensorFlow
、Python 3
、Cuda
、Cudnn
等包,准备TensorFlow
环境。
其次,还要下载Steam
和CSGO
。
下载玩 Steam 和 CSGO 后,我们需要下载训练好的模型库。我已经压缩了我训练好的模型,并将其放入 checkpoints 文件夹中。
现在,一切准备就绪。
我的yolov3/configs.py文件已经配置为自定义训练对象检测,input_size值为 416。
然后运行。
YOLO_INPUT_SIZE如果你需要更高的准确性,你可以更改,但是根据我的测试掉帧很严重。
现在,当您在后台运行 CSGO 游戏时,运行YOLO_aimbot_main.py脚本。
当 YOLO 检测到屏幕上的物体时,他就会自动锁定敌人并击杀
PS:如果鼠标在游戏中飞来飞去,请打开游戏控制台并键入m_rawinput 0,这会禁用原始游戏输入。此外,你可能需要更改灵敏度或其他次要设置。
结果:
上图!
首先,我大概使用了大约 1500 张图像来训练这个自动模型。
大部分训练数据是我参考别人的方法生成的。
最后
给大家分享一些关于HTML的面试题。
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024c (备注前端)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
)**
[外链图片转存中…(img-w70G0UgJ-1713282173021)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!